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Abstract. We consider a class of mathematical models involving nonlinear differen-
tial equations with hereditary terms. Included as special cases are a number of models that
have been proposed as qualitative models for protein synthesis in eukaryotic cells. We
establish global stability for these models and discuss the implications of our results.

1. Introduction. Our discussions and analysis in this paper deal with a class of
mathematical models for the regulatory pathways involved in the synthesis of proteins.
These models are based on the Jacob-Monod hypothesis [11, 15] for gene regulation in
prokaryotic cells, which since it was first proposed has been the subject of a large amount
of research, both theoretical and experimental. While the basic tenets of the Jacob-Monod
theory for prokaryotes are now widely accepted, much less is understood about regulation
of protein synthesis in eukaryotes and higher organisms [15]. This is, therefore, an area
where theoretical models could play a significant role in the near future in attempting to
further our understanding.

In discussing the Jacob-Monod theory, one must distinguish between two basic types
of systems often referred to as positive and negative feedback systems respectively. The
positive feedback or inducible systems involve an enzyme that is normally present in the
cell only in trace amounts and whose synthesis is induced by the presence of a metabolite
(e.g., the substrate for the enzyme) through positive feedback mechanisms (when the
metabolite is presented to the bacterium, repression of the operon is blocked, thereby
allowing structural genes for the enzyme to be transcribed). The classical example of an
inducible enzyme is 8-galactosidase in the bacterium Escherichia coli. Negative feedback
or repressible systems are involved in the synthesis of enzymes in the biosynthetic path-
ways leading to essential metabolites such as nucleic and amino acids. Since our emphasis
here will be on repressible or end-product repression systems, we shall discuss the per-
tinent mechanisms in some detail in a subsequent section of this paper. The biosynthesis of
histidine [15, 33] (one of ten basic amino acids which man, as well as many micro-
organisms, can synthesize) is an example of a synthetic pathway involving end-product
repression. This pathway, which has been studied extensively in the bacteria Escherichia
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coli and Salmonella typhimurium, is a gene-regulated sequence of enzymatic reactions (nine
structural genes code for ten enzymes involved in the pathway) which is controlled at the
level of the first enzyme through end-product repression of synthesis of this enzyme and
the succeeding ones in the pathway.

After a brief description of the Jacob-Monod theory for repressible systems in the next
section, we shall discuss a class of mathematical models based on these principles (B.
Goodwin was an early proponent of such models [6, 7] and certain of these are often
referred to as “Goodwin’s models™) and present answers to qualitative questions related
to these mathematical models. Specifically, we give rigorous arguments that, for a large
class of models (involving discrete and distributed delays), the equilibrium state is globally
asymptotically stable for all choices of kinetic parameters. We conclude the paper with a
discussion of the interpretation of our results.

2. The Jacob-Monod model for end-product repression in prokaryotes. We  briefly
summarize the general principles underlying the so-called Jacob-Monod model for en-
zyme repression. For further specifics, the reader may see the more detailed developments
in [15]. Proteins, and in particular enzymes, are synthesized in prokaryotic cells under
regulation of a set of genes—segments of deoxyribonucleic acid (DNA )—called operons.
Each operon contains structural genes for each of the enzymes whose synthesis it regu-
lates, as well as an operator gene and sometimes a regulator gene. The unique sequence of
amino acids in the polypeptide chains of each type of protein is specified or coded for by a
sequence of nucleotide residues in DNA. However, the structural genes themselves do not
serve directly as coding templates during the biosynthesis of proteins which takes place at
the ribosomes. Rather the genetic message or code in the structural gene is first enzymat-
ically transcribed to form a ribonucleic acid called messenger RNA (mRNA) and this
mRNA acts as the coding template in the biosynthesis at the ribosomes.

The operator loci control the structural genes where mRNA’s are synthesized by
transcription of the genes. At the ribosomes, mRNA (in complex reactions with ribosome
and aminoacyl-tRNA’s) is translated and enzymes (i.e. polypeptide chains) are produced.
These enzymes catalyze a specific (usually sequential) pathway which results in formation
of a particular end-product (e.g., histidine, tryptophan, etc.). This end-product is itself
involved in repression of its associated operator gene. It may combine with one the
enzymes of the sequence (often the first; e.g., as in the biosynthesis of histidine) to form an
active repressor complex. Other known pathways (e.g., biosynthesis of tryptophan, an-
other amino acid) involve a regulator gene in the operon which codes for an aprorepressor
which plays the role of the inactive repressor, combining with the end-product to form the
activated repressor complex. Transcription (of DNA), translation (of mRNA), as well, of
course, as the enzyme sequences themselves, are all enzyme-regulated processes, so that
any dynamic mathematical model must ultimately be based on velocity approximations
for the pertinent reactions.

In Fig. 1 we present a schematic for the Jacob-Monod model described above. In this
figure, we have used dashed lines (typified by tryptophan biosynthesis) and dotted lines
(typified by histidine biosynthesis) to illustrate two different modifications which are
known to occur in prokaryotes.

3. Mathematical models based on the Jacob-Monod hypotheses. There have been
numerous investigations of mathematical models [1, 5-9, 13, 14, 16-19, 21, 22, 24, 26-29,
31, 32, 34] for protein synthesis and many of these have been based on the efforts of B.
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Goodwin in the early 1960s. Goodwin, employing nonlinear models in an attempt to
explain organizational aspects of biochemical processes in cells [6, 7], was one of the first
to give serious attention to certain aspects of these models. One can find many variations
of the early Goodwin models in the literature and it has become customary to speak of the
“Goodwin models” or “Goodwin-type models” for protein synthesis. One such model
(and perhaps the most extensively studied) which can be derived either from kinetic
velocity approximations [19, 34] or from simple probabilistic notions [24] is based on the
schematic in Fig. 2. This clearly can be interpreted as an approximation to the Jacob-
Monod scheme outlined above.

The simple nonlinear mathematical model (the three-dimensional Goodwin ODE
model [7]) consists of equations

- bxl(t)v

. _ a )
O = o
Xo(1) = axy(1) — Bx2),
Xs(t) = yxot) — 0xq(2),

where x,, x,;, x3 are concentrations of mRNA, protein, and repressor complex respectively.
(All of the models discussed in this paper—and most of those found in the literature—are
for a large aggregate cell population. In prokaryotic cells, there is usually only one specific

3.1
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operon per cell for a particular pathway and the discrete number of protein or repressor
molecules for this pathway may be small. These discrete quantities in a single cell or small
finite colony of cells are replaced by a continuum described by differential equations in
most models in the literature. Thus, models based on concentrations of mRNA, genes,
repressors, etc., should be interpreted so that the numbers and parameters involved
represent ‘“‘averaged’’ values over an aggregate.)

Often in the literature [7, 8, 9, 24] one finds a (perhaps only implicit) simplifying
assumption that x; = Ax,, so that in place of (3.1) one considers a two-dimensional
version (the two-dimensional Goodwin model)

x\(t) = K+—‘11<x2('t—)' — bx(1),

Xo(1) = axy(t) — Bx1)
In the other direction, one may specify more of the intermediate variables (presumably

some of those in the enzyme sequence and complexing reactions) to obtain the n-
dimensional Goodwin-type model [18, 34]

3.2)

X(t) = — bxy(1),

—a
K + kx,(t)
Xi(t) = ax;o(t) — Bixt), i=2,3 - ,n.

3.3)

Finally, another often-studied modification [8, 18, 34] involves a model in which coopera-
tive inhibition of transcription is postulated. In this case one essentially assumes that p
repressor molecules combine to effect the repression of the operator gene and modifies the
mathematical models by replacing the nonlinearity in the first equation by a/[K + kx,(¢)].
While there is evidence [30, 35] to suggest that p > 1 is a realistic assumption for cer-
tain pathways (especially in inducible systems), experimental findings [32, 33, 35] indicate
that the case p = 1 is of paramount importance for end-product repression models for
prokaryotes. We shall, therefore, in this paper restrict our attention to this latter case,
with our findings for models with p > 1 to be detailed in a future paper.

Our considerations here in actuality do not deal just with the model embodied in (3.3);
rather, we investigate an extension which allows for both discrete and distributed time
delays in the biosynthetic pathways. To see the importance of such models, we must turn
to a discussion of some fundamental differences between prokaryotic and eukaryotic cells
when one is considering the synthesis of proteins.
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If one reads carefully the many papers on Goodwin-type models for protein synthesis
(including Goodwin’s early work), it becomes clear that almost all of the authors are
treating the Goodwin models as approximations for protein synthesis in eukaryotes. (We
indicated above how the Goodwin type models can properly be viewed as approximations
to the well-accepted Jacob-Monod theory in prokaryotes. Unfortunately, no such well-
accepted theory exists for eukaryotes.) One fundamental difference (there appear to be
significant others [15]) between prokaryotes and eukaryotes that is important in biosyn-
thesis is that in eukaryotes the DNA (in the nucleus) is physically separated from the
ribosomes (found in the cytoplasm where some adhere to the endoplasmic reticulum) so
that translation does not begin until some time after transcription is completed and the
resulting mRNA is transported across the nuclear membrane and to the ribosomes.
Furthermore, the repressor complex molecules involve an end-product—produced in the
cytoplasm—which must be transported to the DNA in the nucleus before transcription
can be repressed (all of this, of course, is assuming that the basic tenets involving
transcription, translation, repression, etc. of the Jacob-Monod theory can be extrapolated
to hold for eukaryotes). Experimental evidence [27] does support the idea (suggested by
Goodwin in [6] and many others subsequently) that there are substantial time delays
between transcription and translation and perhaps inhibition (repression) in eukaryotes.
This may be due to a number of phenomena, including diffusion, packaging and transport
across membranes, etc. Some authors [1, 26, 27, 32] have used partial differential equation
models to investigate this aspect of protein synthesis in eukaryotes while others [5, 9, 16,
17, 24, 28, 29] have tried to modify the models of Goodwin to include some type of time
delay directly. Our interest in this paper is in the latter alternative.

In any case, if one takes the viewpoint (as do Goodwin and a number of authors [26,
27, 32]) that the essential difference between protein synthesis in eukaryotes and that in
prokaryotes is related to spatial localization due to the nuclear membrane, then it is quite
natural to investigate the qualitative behavior of Goodwin-type models which have been
extended or modified to account for the delays between transcription, translation, and
repression. In the literature one unfortunately finds misconceptions of how one should
extend the Goodwin models to include time delays (this, in our opinion, does not involve
merely adding more intermediate variables with dynamics simultaneously coupled to the
original Goodwin model variables). The most direct way to account for delays (and that
employed by a number of investigators of extended Goodwin-type models) involves model
equations with discrete delays of the form:

a

0 = =)

- bxl(t)s

3.4)

X[1) = ap;a(t = 7,00) — Bx2), J=23 - ,n

However, since there is evidence that distributed delays are more appropriate approxima-
tions to reality (this can be argued based on results of fitting other types of delay models to
experimental data for enzyme-regulated processes in microorganisms [3] and/or from
modeling principles that assert that the discrete delays in (3.4) are really approximations
to distributed delays that must be present in any “‘averaged” or aggregate model), one
really should perhaps consider models

%(1) = a / <1< +k f 0 Xalt + 0)¢(60) d0> — bxy(0),
T (3.5)

0

(0 = & [ i+ 05O d0— B0, =23 n
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Various special cases of (3.4) or (3.5) have been partially analyzed in the literature [5,
9, 16, 17, 24, 28, 29] (as Goodwin [6, p. 8] correctly observes, rigorous analysis of delay
equations poses nontrivial difficulties; it is not surprising that much of the analysis of delay
system protein models has involved linearization, approximation, numerical simulation,
or a combination of these). In view of a number of incorrect conclusions auJ claims based
on non-rigorous analysis and/or computer simulations of other protein synthesis models
(e.g., some authors carry out analysis of a linearized system, obtain local stability results
and incorrectly conclude that this rules out oscillations; for remarks on other erroneous
claims see [31]), it is exceedingly important in trying to argue validity or lack thereof of
these models that one have completely rigorous discussions to support any claims for a
certain qualitative behavior that a particular model might or might not possess. We offer
below rigorous analysis of a class of models that include as special cases the models
represented by (3.3), (3.4) or (3.5).

The model we analyze, in detail, in a subsequent section is given by

x.(1) = a/(K + k f_orx,,(t +0) du,.(ﬁ)) — bx,(t)

50 =y [ xnlt + 0 dua®) ~ B j=2.3, 0 .m,

(3.6)

for ¢+ > 0, with initial data x,(8) = ¢,(8), —r < 6 < 0, where the ¢, are given nonnegative
functions. The measures u; each consist of a finite number of saltus functions plus an

absolutely continuous part. That is, there are finite constants ¢;;, rp, i = 1, - -+ ,n,j =0, 1,
v,k =0,1, .-+, », and scalar functions ¢, & Ly(—r,0),i = 1, ---, n, such that
0 " 0
[0 du®)= % ai=r) + [ w00 ao (3.7)
where 0 = r, < r, < r, < +++ < r, = r. Our analysis will reveal that (3.6) has a unique

equilibrium which is globally asymptotically stable in the sense that any solution corre-
sponding to non-negative initial functions will remain non-negative (component-wise) for
all + > 0 and will approach the equilibrium solution as t — . Before turning to our
detailed analysis of (3.6), we indicate briefly the motivation behind our efforts.

A fundamental question that has occupied a central role in many investigations of
protein synthesis models is that of whether sustained oscillations (i.e., periodic solutions)
can exist or not. The inspiration for this query appears to be the early efforts of Goodwin
[6] who sought to explain “fundamental periodicities occurring in dynamic organization
of cellular processes”. A review of the experimental and theoretical literature [10] reveals
at least two (perhaps associated) types of oscillations that many investigators believe are
intimately related to biosynthesis of proteins. First, there is some evidence [10, 13, 14, 19,
23, 32] that many enzymes are synthesized periodically rather than continuously within
the cell. This produces oscillations (epigenetic oscillations) in concentration levels of
enzymes, corresponding mRNA, repressor complex molecules, etc. Models for synthesis
of proteins should reflect (at least qualitatively) features of these gene regulation-related
oscillations.

A second oscillatory phenomenon, circadian rhythms, has been associated with pro-
tein synthesis in that many investigators feel that end-product repression of ribosomal
activity may be of primary importance in producing these rhythms. While circadian
rhythms as studied in [12, 20, 25] and elsewhere may well be related to epigenetic
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oscillations, one must exercise some care in speaking of these as if they were the same. The
two phenomena appear distinct in that circadian rhythms have been found only in
eukaryotes [25, 27] while evidence of epigenetic oscillations has been claimed for both
prokaryotic and eukaryotic cells [10, 13, 14].

Whatever the case may be, almost all of the literature on mathematical models for
protein synthesis involves consideration of the possibility of sustained oscillations. Our
analysis shows unequivocally that any mathematical model which is a special case of (3.6)
cannot possess periodic solutions (of small or large amplitude).

4. Stability results. We turn now to a careful analysis of the system (3.6), our results

being summarized in the following theorem. Our assumption throughout is that a, b, K, k,
a,, B, are positive and finite, but otherwise unrestricted.
THEOREM. The system (3.6) has a unique equilibrium solution in the positive orthant P =
{(xER"|x, = 0}. Corresponding to any continuous initial data ¢ with ¢, (8) > 0, —r <6 <
0,i=1,2, -, n,a unique solution of (3.6) exists for all > 0 where its trajectory remains
in the positive orthant P and as t — =, the solution approaches the equilibrium solution.

Since each of the measures y; in (3.6) are of finite total variation on [—r, 0] we may,
without loss of generality, assume that each is a probability measure. That is, denoting by
L,(y) the quantity defined in (3.7), we assume L,1) = 1 for each i. Furthermore, our
application already involves the implicit assumption that y' > ¢ = L,(¥') = L(J?).
Further rescaling of the nonlinear term in (3.6) leads to equivalent equations

Lo g
O = TTRLeD
Xi(t) = a; L (x;-1") — Bixi(1),

- bxl(t)a

where d = a/K, k = k/K and we have adopted the notation x! for the function § — x(¢ + )
on [—r, 0]. In the analysis below we shall, for convenience in exposition, drop the tildes on
the parameters.

The existence statement (and positivity of solutions) of the theorem follows in the case
of discrete lags alone (e.g. (3.4)) using the method of steps [4]. For the more general case
of (3.6) the ideas again are standard as one can construct Picard interates in the positive
cone of continuous functions C([—r, 0], P) to obtain existence, uniqueness, and positivity
of solutions. Details of these arguments may be found in [2] and will not be given again
here since they involve only rather classical ideas along with the technical details necessary
to carry them out.

We shall here concentrate on the statements regarding behavior of solutions as t — o,
We present detailed arguments for the case n = 2. This restriction is only for ease in
exposition and notation. All of the arguments given below can be trivially extended to the
case for general n. Absolutely no new ideas are involved, but the notation and details are
not particularly pleasant (see [2]).

We are, therefore, considering the system

)= — 4
xl(t) - ] + kLz(th) bxl(t)»

x(t) = ali(x)) = Bx(t), 120

4.1
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Equilibrium solutions will be constants x,, X, which (since L,(%;,) = x,L,(1) = X,) must
satisfy

a/(l + k.x.z) = b)fl, ax.l = ﬁx-2

or

kbox? + Bbx, — Ba = 0, Xy = = X . 4.2)

The one (the only positive) solution of interest to us is
. _ —Bb + (8% + 4kbafa)"*

X, =

2kbo
_ Bbi(1 + dkaa/Bb)"* — 1
2kbel
= 2—% (1 + dkaa/Bb)V2 — 1) (4.3)
with
f2 = i = EIE (1 + dkaa/Bb)"2 — 1). (4.4)

To complete the arguments regarding behavior of a given solution as t — o, our
method of argument is as follows: We shall construct monotonic sequences of numbers
(U™ oAV ™ =™, i = 1,2, so that U™ 7 X, V™" N X, ,i = 1,2, as m — o, We show
that these sequences are such that for any fixed m, there exists T, such that the given
solution satisfies

Uimo < x,»(t) < V,‘mo forall 2> T’"o’ i= l, 2. (4.5)

This will establish the desired behavior for the solution.

The fundamental (and essentially only) tools we employ in these arguments are simple
differential inequalities: if w(f) < A — Bw(?) for t > 7, then w(t) < W(¢) for t = 7 where W
is the solution of W(t) = 4 — BW(t), W(r) = w(7). Also, &(t) = A — Bw(t) fort > 7
implies w(t) = W(t) for t > 7 where W is as just defined. We shall use these again and again
along with the elementary result that solutions of W(t) = 4 — BW(1), W(r) = W, are
given by W(t) = (A/B) + {W, — (4/B)}exp (—B{t — 1}).

To begin our arguments, we consider a fixed solution (denoted by x,, x, throughout) of
(4.1) corresponding to fixed nonnegative initial functions. According to our previous
comments, the solution will then exist for all # > 0 where it will remain nonnegative. In our
selection of the monotone sequence {¢,,} below, we make the choice satisfy 0 < e, < 1/m
at each step so that ¢, — 0.

Let v,! be the solution of z = a — bz, z(0) = x,(0). Then since Ly(x,') = 0 for all £, we
find that x,(¢) < a — bx,(t) for t > 0. Thus, our differential inequality implies

x(1) S vl(@) = % + {xl(O) - %} exp (—bt),

or, choosing 0 < ¢, < 1, there exists ¢, > 0 such that

xl(t) < V]l = i— + € fOl‘ t> tl .
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Next we let v,! be the solution fort > 1, + rof 2 = aV,' — 8z, z(t, + r) = x(t; + r); hence
1y = X X
v'(t) = EVI + {xz(tl +r) - FVI} exp (—8{t — (1, + r)}),
and choosing ¢, < ¢, there is a f, such that
OR ) S% Vite=V, for t26>4+r

Since x,(t + ) < Vy! fort + 0 > t, we find that L,(x,*) < V,! fort >, + r so that
X(t) < aV! — Bxy(t) for t>1 + r
It thus follows that
x () S V! for t=>2t6,>1 +r
We define u,' to be the solution of

a

=Ty

— bz(t), t>t+r, 2ty + r) = x(t; + 1)

so that

)= —92 _ a —plt —
U (t) - b[l + szl] + {xl(t2 + r) b[l + szll} exp( b{t (t2 + r)})

ZU;‘EE“__}_amﬁ—ea for t>2t,>t,+r

for some 73 > t, + r, where ¢; has been chosen so that e; < ¢; and U,! > 0. Since x,(¢ + ) <
Voylfort+ 0 > 1, we have 1 + kLy(x') < 1 + kV,! for S t, + rso that x,(¢) S a/(1 + kV?)
— bx,(t) for t = t;, + r. Thus, x,(¢t) = wu,'(¢) fort = ¢, + r and

x(t) = U for t=2t:>1t,+r

Now let u,* be the solution for t > t; + rof z = aU,' — Bz, z(t; + r) = xo(ts + r) so that for
¢, chosen with ¢, < ¢; and (a/8) U,* — € > 0,

w\1) = % Ul + {xdts + 7) — % Uy} exp (—B{t — (ts + r)})
2U2‘E%U1‘—e4, (2t >t +r

for some ¢, chosen sufficiently large. The inequality x,(t + 6) = U,* for t + 0 = ¢, yields
Xo(1) = alU,* — Bxy(t) for t > t; + r, so that we obtain

xo(t) = U for t21t,>t;+ r

We next let v,% be the solution of

(1) = — bz(1), t>t +r, z(ty + r) = x(t, + ).

- a
b[1 + kU,']

It follows in the usual manner that there exists t; > ¢, + r so that v,%(t) < V2 = a/(b[1 +
kU;']) + ¢; for t > t; , where €; < ¢, has been chosen. Also, since x,(t + 6) = U,' fort + 6
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>1t,,wefind 1 + kLy(x") = 1 + kU,* fort > t, + r. We thus conclude that

a

x,(1) £ m — bx(1), t=>t,+r

and hence
x)(H)y V2 for t21t,> 1t +r
Continuing in this way one argues without difficulty that there exist €5, ¢, , - -+, and
te, t;, -+ such that
XZ(I)S VQZE%Vlz"I'Gs for I2t6>t5+r,
a
> Ul ———0 — > f t=>t,>t+r,
Xl(t) = Ul b[l ¥ kVZZ] €7 0 or 7 8 r.
(4.6)
XQ(I)ZUZZE%U12_€3>O fOI‘ t213>t7+",
a
SVP= 1t >
xl(t) = Vl b[l T kU22] €9 fOI‘ 121 > g + r,

etc. One thus obtains sequences {V;™}n 1" U™} m 1", { = 1, 2, {t;} such that the V;",U;™
are positive, t; < t;;,, and

x()y < V™ for t2= tym_s,

x() < Vo™ for t2= tym-s,

4.
x(t) = U™ for t2= tim_y, @7
x(t) = U, for 12t
form = 1,2, --- . If one defines U,® = 0, the Us and Vs are defined by the recurrence
formulae
m = a m=2
y,"= b[l + kU, + €m-3 V, 8 Vi™ + €m-2,
2 N (4.8)
U, Em—em-l, U, EEUI — €&m -

It follows immediately from (4.7) and our constructive arguments that (4.5) obtains.
To complete our arguments we need only demonstrate that ¥, ~ x,, U™ ~ %, ,i=1,2.
First, using the relationships (4.8) along with the monotonicity of {e;}, an easy inductive
argument shows that V,**t <V, U™, U™, i=1,2,m = 1,2, --- . We also obtain
boundedness for the monotone sequences U,™,V,™, whence

Vi = l]m Vtm, U; = hm Uim (4~9)

m—© m—o

exist for i = 1, 2 and the limits must be finite and nonnegative. Taking the limit in (4.8) we
see that the limit point must satisfy




GLOBAL ASYMPTOTIC STABILITY 219

oo___a ;
i R

F a

R TEvI AR

Simple algebraic arguments using (4.10) reveal that

(4.10)

Uz= Ul.

®|IR ™R

- a _ a _ a
Y S BT+ k] ‘b[ -

aa

1+k—§‘—01] bll+k—F———=
Bb[l +k%V1J

or

T/,{ﬂb[l + k% r/l} - kaa} = aﬁ[l +k % V]
which can be simplified to yield

kabV® + 8bV, — Ba = 0. (4.11)

Recalling (4.2), we see that ¥, must agree with X, , the only nonnegative solution of the
quadratic equation (4.11), and that ¥, = a/8 ¥, is the same as %, . The symmetry in (4.10)
between the Us and Vs allows one to argue in a like manner that U, = x,and U, = %, .

We thus obtain X; = lim,,-. V;™ = lim,,_» U;™ and the arguments to establish our
claims are complete.

5. Concluding remarks. Early studies of Goodwin-type models for protein synthesis
in eukaryotes involved use of ordinary differential equation models in which investigators
sought to verify that these models describe adequately oscillatory pheonema that have
been obsérved in living organisms. Early claims and incorrect conjectures based on partial
analysis and/or computer simulations were eventually subsumed by more careful analyses
which showed that many of these model systems could not possesss periodic solutions for
parameter values in a biologically meaningful range. A number of authors [12, 19, 20, 22,
24, 26, 27, 32], aware of features of eukaryotic cell physiology (e.g. transport across
membranes as a possible etiological factor for oscillatory pheomena in cells [10, 25])
which might produce oscillation-sustaining delays in the biosynethetic pathways, have
noted that perhaps the destabilizing effect of the introduction of delay terms in an
ordinary differential equation model might be necessary to obtain approximations to
reality that exhibit oscillatory behavior. (Goodwin [6, p. 8] himself suggested this in his
early discussions.)

Our results in this paper show rather conclusively that for at least one class of models,
the introduction of delays—in however sophisticated (discrete or distributed) a manner
one attempts this—in a simple extrapolation of the Goodwin ordinary differential equa-
tion models will not produce a system with oscillations or even instabilities.

If one is studying the Goodwin models as an approximation for the Jacob-Monod
theory in prokaryotes (it is not so easy to see the rationale for the introduction of delays in
this case), experimental evidence for epigenetic oscillations is not unequivocal and one
may or may not expect oscillatory behavior in repressible systems. (In asynchronously
grown cell cultures only damped oscillations [13, 14] were observed, and these for an
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inducible system, but conjectures favor the presence of sustained oscillations in synchro-
nized populations.) For the modeling of eukaryotes our results, coupled with those of
Thames, Elster and Aronson [1, 26, 27], suggest that simple extrapolation of the Jacob-
Monod theory for repressible systems described by ordinary differential equation models
to models which include delay or diffusion terms is not adequate to shed significant light
on the basic mechanisms or phenomena involved. It remains to be seen whether a model
employing diffusion terms and delays (partial differential equations with delays) might be
of some usefulness in explaining eukaryotic protein synthesis as a straightforward exten-
sion of the Jacob-Monod theory. In view of the complexity of eukaryotic biosynthesis as
currently hypothesized by many authors [15], our conjecture is that such an approach may
not prove particularly fruitful.

Note added in proof. After this paper had been accepted for publication, the authors
received a preprint of a paper by D. J. Allwright (4 global stability criterion for simple
control loops, J. Math. Biol., to appear) which also contains results for the discrete delay
model (3.4) above. While Allwright’s arguments differ from ours, his conclusions on
stability for these models are the same.
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