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VIBRATIONS OF LONG NARROW PLATES—II»
By

R. S. CHADWICK

University of California, Los Angeles

Abstract. An asymptotic theory for the natural bending modes of a long narrow
plate having variable width and thickness is constructed. A two-variable expansion and a
transition layer expansion are matched to find the mode shapes and eigenvalues.

1. Introduction. Previously, Chadwick [1] considered the free vibrations of a long
narrow elastic plate with variable width. That problem is motivated by an attempt to
understand the mechanics of the cochlea. Basically, a type of boundary layer theory was
developed which could accurately determine the first few longitudinal modes. In this paper
we use a different expansion procedure which is accurate for higher longitudinal modes
and complements the previous calculations. The present work also generalizes the pre-
vious study by including the effects of variable thickness.

2. Formulation. The free bending modes are sought for a long narrow plate having
the planform shown in Fig. la. The ends of the plate at X = 0, L are assumed to be straight
and parallel to the F-axis. The curved edges are given by Y = ± BG{X/L), where B is some
characteristic half-width of the plate. The thickness of the plate, as shown in Fig. lb, is
described by H - H0 (X/L), with H0 being a characteristic thickness. Our primary interest
is the case when the plate stiffens in the X direction. With this in mind, it will be sufficient
to require that U/G2 be a smooth, monotonic increasing function of its argument. Other
cases will be discussed briefly in Sec. 7.

In physical coordinates, the deflection of the plate JV(X, Y, T) satisfies the linear elastic
plate equation for a plate having variable bending rigidity (cf. Vinson [2, p. 17]):

V2 (D V2 W) - (1 - a) (y(D, W) + pH(82W/8r) = 0, (2.1)

V2 = (82/8X2) + (82/8 Y2), (2.2)

V(D W) = _ 2_S^_8HV_ 8W_8HVf
sy2 z dX 8Y ex BY dY2 8X2 K '

D = EH712(1 - a2) (2.4)

where E is the modulus of elasticity, a is the Poisson ratio, and p is the density of the
material. In what follows, E, a, and p could be taken as smooth functions of the
longitudinal coordinate; however, we will treat them as constants and attribute all the
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Fig. 1. (a) Planform geometry of plate (top); (b) thickness variation of plate (bottom).

inhomogeneous behavior to the variable thickness. All edges are assumed to be simply
supported, which requires the deflection and bending moment to vanish at the edges.

Dimensionless coordinates x, y are introduced with

x = X/L, y = Y/B, (2.5)
and since the free vibrations of the plate are to be determined, we look for a solution in the
form

W(X, Y, T) = w{x, y) cos UT. (2.6)

The plate equation then becomes

( 82 4. 2 ^ V . 2 Tit \ 8 ( 82 4- 2 82 \b? < -5W UM)T*r w

+ e2 U2(x) ^<x + e2 - U3(x)u2 w = 0 (2.7)

where

U^x) = 6(U'/U),

U2(x) = 3[(U"/U) + 2 (U'/U)2], (2.8)

Ulx) = 1 /U2

and a; = [(pH0B4)/D0]1/2 0 is a dimensionless frequency, with D0 = EH03/[\2(\ - a2)].
Note that in Eq. (2.8) the primes designate differentiation with respect to x. Also, e = B/L
is the slenderness ratio of the planform. The zero-deflection boundary conditions are

w(0,^) = 0, M<G(0), (2.9)
w(l, y) = 0, b|<G(l), (2.10)

w(x, ±G(x)) = 0, 0 < x < 1. (2.11)

The exact forms of the zero-moment boundary conditions are

(82w/Sx2)(0, y) = 0, H<G(0), (2.12)
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(82w/8x2){\, y) = 0, M<(?(1), (2.13)

82w , . „ 82w
(x, ±G(x)) + e2 a —j {x, ±G(x))8y2 v ' v /' 8x2

f d2w d2w
+ <2 G'2 r (*, ±G(x)) + (X, ±G(x))

T 2(1 - a)e2 G' -^—7— Qc, ±G(x)) = 0, 0<x<l. (2.14)8x8y

(These boundary conditions are identical to those considered in [1], and are reproduced
here for convenience.) Eqs. (2.7) through (2.14) define the exact eigenvalue problem.

3. Two-variable expansion procedure. For our immediate application, we want to
study the behavior of the solution to the eigenvalue problem posed in Sec. 2 as e —> 0-. A
fruitful line of approach proves to be a two-variable expansion in the longitudinal
coordinate x. The tentative scaling that was made, x = X/L, is an appropriate scale for the
slowly varying width and thickness functions <j(.x) and U(x). However, we must anticipate
that the deflection w may have short longitudinal wavelengths on the scale of the width, B.
We therefore introduce a fast length scale

x(x) = — J" f{x)dx. (3.1)

The function f(x) will have to be found, and will involve the slowly modulating effects of
G(x) and U(x). The lower limit of integration in Eq. (3.1) will be appropriately chosen
later.

The following expansions are introduced:

w(x, y) = A(£){w1(x, x, y) + tw2(x, x,y)+ • • •}, (3.2)

« = a + e/3 + • • • (3.3)

where a, 0, ■ ■ • , are unknown constants and A(e) is an unknown scale factor. The fast
variable x enters the equations through the partial derivatives

8W"(i + f {,)"■ <34)
To order A(e), the plate equation, Eq. (2.7), becomes

_ m , u d" Wi f a V n t-> 0
+ IF--(-v) (3'5)

while the boundary conditions, Eqs. (2.11) and (2.14) yield

wt(x, x, ±G(x)) = 0, 0 < x < 1, (3.6)

^r + -/2^r = ° on y=±CK?). (3.7)

Considering a solution of the form

f - , -JCOS {Es(x)l'2y 1
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both Eqs. (3.6) and (3.7) can be satisfied by choosing

(£s(x))1/2G(x) = (!»-«7T „ = 1 ? . . . n Q\
(Ea(x))1/2G(x) = nir ' ^

The subscripts s and a refer to symmetric and antisymmetric transverse modes, respec-
tively.

Eq. (3.8) is a solution of Eq. (3.5) provided that Ai(x, x) satisfies

t* HAl - 2i* E + \ E2-( —V
1 8x4 1 8x2 _ V U) .

A1 = 0 (3.10)

where the subscripts on E have been dropped for convenience. Looking for a solution of
the form Ax ~ exp \x, we find

To prevent secular terms in x from appearing in the second-order problem, X must be
independent of x and therefore a constant. For oscillatory solutions, X2 must be negative.
Without loss of generality, both these requirements can be satisfied by choosing

f = (a/U)-E (3.12)
which makes X2 = — 1. The first-order solution can now be written as

Wi(x, x, y)= {flj(*) sin x + bx(x) cos f)| ^ ^(x)f12} ' ('3'13)

The functions ax(x), bx(x), and the eigenvalue approximation a are still undetermined.
The order eA(e) problem is

Lw2 = 2a$ U3 wx - 4/ a f* - - (2/' + fUx) d' Wl
8x dx 8y VJ ' l' 8x 8y2

-<W+TO)0-4/-^, (3.14,
w2(x, x, ±G(x)) = 0 0 < x < 1, (3.15)

0-
(3.16)

82 w2 , 82 w2 82 wx a 8wx ^ s 82wx
-gf+°F -JF"2(1 " ^0!hT, ~ 17" 2°f JTsi

Particular solutions of Eq. (3.14) are of the form

„,~/{si"4{cos M (3.17)
l cos xl ( sin Ea yl

where the four combinations have coefficients which depend on x. Eq. (3.17) satisfies Eq.
(3.15), and applying Eq. (3.16) yields two coupled differential equations for ax(x) and
bi(x)\

(dajdx) + p(x)ax = - j ~ bx (3.18a)

(dbjdx) +p(x)b1 = ax (3.18b)
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where

p(x)=9^_1f_i (Buy .
P{ ) 4 U 4 E 4 a — EU 1'

The solution of Eqs. (3.18a, b) is

ai(x) = (C\ sin + C2 cos (31;) exp^ — J p(x)dxj (3.20a)

bt(x) = (— Cx cos /?£ + C2 sin /3£) exp^ - J p(x)dxj (3.20b)

with Ci and C2 arbitrary constants, and

«"!/* M ' (3-2l)
With at(x) and ^i(x) now determined, the first-order solution takes the simple form

* V) = C°S (f + k + 0o){ sin Eay) (3'22)

with C0, d0 arbitrary constants, still to be determined. Notice that a, which is imbedded in /
(cf. Eq. (3.12)), is still unknown, as well as fi. Eq. (3.22) cannot be expected to be valid in
the whole interval 0 < x < 1, since it is possible that / can vanish at some point. In fact,
this is the interesting case that will be examined.

Let xt be a zero of / referred to as the transition point. The monotonicity of U/G2
insures that for fixed a, at most one transition point exists. Also, from the construction of
/ in Eq. (3.12), Eq. (3.22) will be valid in the flexible end of the plate 0 < x < xt . Assuming
that x, exists, another expansion valid in the neighborhood of xt must be constructed
which will asymptotically match with the two-variable expansion. This matching process
will, in fact, determine /3, d0, C0, and A(e); and then satisfying the boundary conditions on
x = 0 will determine cf.

4. Transition layer expansion. Assuming the existence of xt , which is a zero of f(x),
we introduce the boundary layer coordinate

x* = {x - xt)/b(t) (4.1)

and we consider the limit process e —» 0 with (x* ,y) fixed. 5(e) is a measure of the thickness
of the transition layer and its dependence on 6 must be determined. The following
expansions are introduced into Eq. (2.7):

w(x, y) = q^x*, y) + 7(e) q2{x*, y) + ■ ■ ■ , (4.2)

w = a + r{e)l3 + • • ■ (4.3)

where 7(e),r(c), • ■ • , are unknown scale factors and a,/3, • ■ • , are unknown constants. To
first order the plate equation becomes

U qi = (d4 qjdy') - (a/Ut f qy = 0 (4.4)
where Ut = U(xt). Notice that Lb is just the beam operator in the transverse direction. In
obtaining Eq. (4.4) we have assumed e/5(e) -> 0 as t -> 0; otherwise Eq. (2.7) would retain
its full structure and we would not obtain a distinguished limit equation. To the same
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order, Eqs. (2.11) and (2.14) are

qt(x*,±Gty= 0, \x*\ < co, (4.5)

(82q1/8y2)(x*,±Gt) = 0, |x*| < °°, (4.6)

where we have written Gt = G(xt). In this approximation the planform is an infinite strip
of width 2Gt .

The solution of Eq. (4.4), subject to Eqs. (4.5) and (4.6), is simply

{AJ)

with

(as/Uty>2 Gt = (n — 1/2)tt
n = 1, 2, • •• . (4.8)

(aa/Uty/2Gt = K7T

At this point Q^x*) is still arbitrary and must be determined from the second-order
problem. If the location of xt were known, Eq. (4.8) would determine the first approxima-
tion to the eigenvalues which correspond to the natural frequencies of a beam having the
length 2Gt .

The most complete equation of order >(«) is obtained if

7(0 = r(e) = e2/52(c) = 8{e) = €2'3,

giving

, _(2a0 2a2 Ut' A d%
"q2 V Ut Ut3 X )qi dx*2 By2 qi '

To the same order, the boundary conditions, Eqs. (2.11) and (2.14), become1

q2(x*,±Gt)= T x* Gt'^(x*,±Gty |x*|<co, (4.10)By

~q2(x*,±Gt)=Tx*Gt'^-(x*,±Gt), |**| < «, (4.11)

where use has been made of the fact that

(82 qjdx*2)(x*, ±G,) = 0. (4.12)

Application of the solvability condition

c< /cos (as/Ut)1/2y 1 , _ r°< j cos (as/UtY'2y
J.Gt( sin (,aa/ut)1,2y I * • J-Gt I Sin (aa/Ut)1,2yII sin (aa/Ut)1/2y) y LGl I sin (aJUty,2y

yields directly the equation for Qi (x*):

*Qi(x*) I 1 L (Uji_ ,GA A
dx*2 ut r a\ut Gtr 1 ^l(x )

Eq. (4.14) can be transformed into the standard form of Airy's equation:

(4.14)

1 The case G,' = 0 requires special treatment and is not considered here.



VIBRATIONS OF LONG NARROW PLATES—II 161

(cP/dz^Q^z) - zQriz) = 0 (4.15)

where

Xo =

Ut
(u,' Tg7

A Ut Gf

P
Tu? , gA
a\u-2G;)

(4.16)

(4.17a)

*o = /,,, M tttt (4.17b)

The appropriate solution of Eq. (4.15), which decays exponentially as x* -> °° and
oscillates as x* -> — is the Airy function A,(z):

Qi(z) = ^i(z) = At r~ U* - ^o)- A0 (4.18)

To get this behavior, the coefficient of x* is Eq. (4.14) must be positive. By Eq. (4.8), a is
positive, and the expression in parentheses is also positive since (U/G2)' is positive by
assumption.

5. Matching and the determination of eigenvalues. The transition layer expansion
and the two-variable expansion must match asymptotically in some overlap domain. To
facilitate the matching process we introduce the intermediate variable

x„ = (xt - x)/r/(e) (5.1)

where e2/3 « rj(e) « 1 as c -> 0. Both expansions are to be expressed in terms of x„ and we
consider the limit e — 0 with x„ fixed. The two expansions are said to be matched to O(n) if

lim + = o (5,2)
e—*0

Xij fixed
Considering first the transition layer expansion, we note that

**= xn > (5.3)

Using the asymptotic expansion of the Airy function for large negative arguments, we
have

Jcos (as/Uty/2y , Oh)1'2 x0 + 0( yf
1 sin (aa/Ut)my ' (7) ° (y> (5.4)

where y = c2/3/t7 —► 0. We will also require the leading term of q^x,,, y) for higher-order
matching. This term comes from the homogeneous solution which has the form

O (x*) (C0S ("s/t/()1M (5 5)
Qi{X ' I sin (aa/Ut)l"yl- { '
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Q2{x*) must be determined from the third-order transition layer problem, in the same way
£>i(x*) in Eq. (4.7) had to be found from the second-order problem. Details of the third-
order problem are worked out in Chadwick [1], For our purposes here, we note that the
dominant part of Q2{x*) comes from the term

auX*2

where au is a constant involving first and second derivatives of U and G evaluated at xt .
Expanding this term in the intermediate variable, we obtain

^x-y)' - i x° fer c°s it +4
x{cos}+o(1; ■ <5-6>

\ sin (aa/Ut)U2y> V y>

Proceeding to the two-variable expansion, it is first noted that

x = xt — v(e)xr, -* xt as e —> 0 with x„ fixed. (5.7)

It is clear that a = a for the transverse modes shapes to agree in both expansions. Then the
expansion for the phase function / near the transition point xt takes the form

/ - („ VV)1/2 + yC"(A„ n x„r* + • • • (5.8)

where C" = [POO]". It's convenient to choose xt as the lower limit of integration in the
integrals defining x and £, which then gives

(5.9)

1 f*t- 1*v
x = - f(r)dr

6 J x,

,.lfiL)3/2.VnM,a+...
3 \y\0J 5 6 C AoVTAo/

and

£ = 7 J f-\T)dr=* - (v x„ XoT2 + 0(v3/2)- (5.10)

The intermediate limit of the two-variable expansion can then be written:

0 ( XoTT Y/2(SAqY/4
\Gt Ut5J \ x„ /

, , e"1/6C,
wi(xv, y) - —=-Jr cos< _ 2 ^ - +

3 \y\0

+ {ye2/3C"v(^-)5/2 + P(r}Xv\a3) +

\3/2Xsin^f {±J + cos (aJVt)l'2y
sin (aa/Ut)1/2y

+ ■••. (5.11)3 \-yXo'

The matching condition, Eq. (5.2), is now applied with /u(e) = y1/4 and with 77(e) chosen
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such that e2/3 « ?? « e2/6. For this limit to vanish, we find

A(e) = e1/6; C„ = (7r\„/G( (7(5)1/2

0„=tt/4; x„ = 0 03 = 0). (5.12)
Nothing can be said about 0 to this order of matching. To proceed to the higher-order
matching we choose /i{e) = yl/i r/1/2 and consider the more restricted overlap domain, Je
« r] « (2/s. In this domain the 0(y)3/2 term in Eq. (5.4) is filtered out and the term
involving an in Eq. (5.6) stays. This an term matches identically with the C" term in Eq.
(5.11), leaving the term involving 0 unmatchable. We must conclude, therefore, that 0 = 0.

The final form for the first term of the two-variable expansion can now be written

«'■>)-«» (7 /*/M"*'+ f) { S + " - (513)
The boundary conditions on x = 0, given by Eq. (2.9) and (2.12), require

j f*' f(r)dr = {m- m= 1,2, (5.14)

Eq. (5.14) is the equation which determines the locations of the transition points xt . The
eigenvalues are then determined from

anm = En(xtnm) Ul(xtnm), n,m= 1,2, •••. (5.15)

6. An example. For a numerical example illustrating the use of the formulas devel-
oped in the preceding analysis, we consider a trapezoidal planform with length 30 mm,
maximum half-width 0.26 mm, and minimum half-width 0.04 mm, corresponding to the
nominal dimensions of the basilar membrane. The thickness of the plate will be taken as
uniform, so a comparison can be made with previous numerical results. Corresponding to
these dimensions, we have G{x) = 1 - k2x, with k2 = 0.84692 and e = 0.008667.

The first term of the two-variable expansion, e1/6 , takes the shape

y) ~ fclSr C0S (tan " " « " f} I s°n JeI y) ,<S-1»
where

and

C0S^t=T^ <6-2>

, (n - l/2)ir I , . J symmetric transverse modeskn= \ hn= l, 2, • - - , S (6.3)i. rnr I lantisymmetric transverse modes

with C0 given by Eq. (5.12).
The transition points xt are determined from the transcendental equations,

k2
tan /3P - /? = e7r — (m - 1/4); n, m = 1, 2, • • • , (6.4)

Kji

and

cos (3q = G[ = 1 K2Xt . (6.5)
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The corresponding eigenvalues are then determined by Eq. (5.15) with U taken to be unity.
The second column of Table I shows the first five eigenvalues computed by this method for
the case kn = ir/2, which corresponds to the first symmetric transverse mode. The first
column lists the eigenvalues computed from three terms of the transition layer expansion,
and the last column is computed from the exact frequency equation of a circular sector
plate (cf. Chadwick [1]). The eigenvalues obtained from the transition layer expansion
gradually deviate from the "exact" eigenvalues. It was originally thought that the two-
variable expansion would be accurate only for large longitudinal mode numbers, but it is
seen that it is remarkably accurate even for the first eigenvalue.

The centerline deflection of the symmetric mode, n = 1, m = 5, is shown in Fig. 2. The
curve is a composite of the first term of the two-variable expansion, Eq. (6.1), and the first
term of the transition layer expansion, Eq. (4.18). The matching of the expansions in an
intermediate overlap domain can be seen.

7. Discussion. We have discussed in detail the case when (U/G2)' > 0, and found
that the longitudinal mode shape is oscillatory for x < xt and decays exponentially for x >
xt . The case (U/G2)' < 0, is essentially the same but with oscillatory soluation for x > xt
and exponential decay for x < xt . The case when (U/G2)' = 0 has a special character and
should be briefly discussed. Physically, this situation corresponds to the case when each
transverse beam element has the same natural frequency. Therefore, the plate is not
divided into "soft" and "stiff" regions, so we expect that no transition points exist. The
appropriate expansions for this case take the form

w(x, y) = Wi(x, y) + e2 w2(x, y) + ••• , (7.1a)

0> = a + t2 /3 + ■■■ (7.1b)

and we find

where

i \ a < \ i cos (ots/U)1/2y s
*"'(*■ >)= 1 sin («„/tW <7-2)

("" y)'1'

U_
G2

n = 1,2, . (7.3)
2 2 ^aa = n ir •

Table I. Eigenvalues for trapezoidal planform (first two columns) and circular sector (last column).

3 terms of 1 term of "Exact"
transition layer two-variable circular

expansion expansion sector

un 2.734 2.732 2.734
oi„ 2.947 2.948 2.948
w,s 3.131 3.133 3.133

3.300 3.305 3.305
ail. 3.460 3.468 3.468
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W(x,0)

0.9 1.0

-0.6 -

Fig. 2. First-order centerline mode shape of trapezoidal planform, n = 1, m = 5.

The function A^x) is determined from the 0(e2) problem, and is found to satisfy the
differential equation

UA " + (4 - {-J aU" + 3a ~ + /j} Al = 0 (7.4)

subject to the boundary conditions

A( 0) = /<,(1) = ^"(0) = ^,"(1) = 0. (7.5)

The eigenvalue correlations, /?, must be determined from the solution of Eq. (7.4). Edge
layers must exist, in general, at the ends x = 0, 1, since a second-order equation can satisfy
four boundary conditions only in the case of good fortune.

Finally, we can qualitatively discuss the case when / has more than one zero, or
equivalently, when more than one transition point exists. This situation would occur when
U/G2 is not monotonic. A somewhat exaggerated case of this type is sketched in Fig. 3.

x——
Fig. 3. Non-monotonic stiffness effects.
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The upper part of the figure shows Up plotted against x, where

Up = a- EU (7.6)
and EU is proportional to U/G2 (cf. Eq. (3.9). So for fixed a, Up > 0 corresponds to
regions where the two-variable oscillatory solutions are allowable, which are denoted by
the symbol "O." Conversely, Up < 0 corresponds to regions of exponential decay which
are marked by the symbol "EXP." The corresponding longitudinal mode shapes are
sketched in the lower part of the figure. The interior of EXP regions are nodes, if
transcendentally small terms are neglected. The plate is then effectively divided into
separate portions which can be excited independently of each other. Thus, the regions 0 <
x < Ri , and < x < 1, are uncoupled from each other, in general.

The process of determining an eigenvalue a is equivalent to finding a positioning of the
zeros of UP such that in at least one region the phase of the oscillatory solutions match the
neighboring regions. The details of finding an eigenvalue for a region such as 0 < x < Rt
has been discussed in Sec. 5. Supposing such an eigenvalue has been determined, it is
unlikely that this would also be an eigenvalue for either of the other two regions. In such a
case, only the region 0 < x < 7?i , would be excited and the others would remain at rest.
Transition points for a region such as Ri < x < 1 are determined by the equation

f f(r) dr = e(m - i-lx, m = 1, 2,
JXL(XR) v •£ ' (7.7)

The function xL{xR) can be determined once the function U/G2 is specified. It is interesting
that Eq. (7.7) is analogous to the Bohr-Sommerfeld quantization condition commonly
used in one-dimensional wave mechanics problems (cf. Fermi [3]). Once the transition
points are found, the eigenvalues can be calculated from Eq. (5.15).
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