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VIBRATIONS OF LONG NARROW PLATES—I*
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R. S. CHADWICK

University of California, Los Angeles

Abstract. An asymptotic theory for the determination of the natural flexural modes
and eigenvalues of a long narrow plate having a quite general planform shape is presented.
A local transition layer exists in the vicinity of the widest portion of the plate, which
reveals the essential structure of the flexural modes. Mode shapes are computed for
trapezoidal and semi-elliptical planforms. The theory is relevant to an understanding of
frequency discrimination in the cochlea (inner ear).

1. Introduction. An exact analytical description of the natural flexural modes of a
vibrating plate is possible in those few cases when the planform geometry admits a
separation of variables solution. The simplest examples are the rectangle and circular
sector. It will be shown, however, that under certain conditions when the plate is long and
narrow, but otherwise has a quite general planform, an asymptotic theory can be con-
structed which has a simple separable form. The theory to be presented is basically a
slender body theory for plates, so naturally the slenderness or aspect ratio of the planform
shape plays an essential role.

Our interest in this problem stems from cochlear mechanics [1], The main elastic
element responsible for frequency discrimination in the inner ear is the basilar membrane,
which seems to be best described as a plate since it lacks static tension. The basilar
membrane is long and narrow with a slowly changing width, and is helicoidal in shape. It
is also bounded on both sides by an incompressible liquid. As a first step towards
understanding the vibrations of the basilar membrane, we omit the fluid coupling and
helicoidal geometry effects.

2. Formulation. Consider a long narrow plate having the planform shown in Fig. 1.
The ends of the plate at X = 0, L are assumed to be straight and parallel to the F-axis. The
curved edges are F = ±BG(X/L), where G(X/L) is arbitrarily smooth and B is some
characteristic half-width of plate. A precise specification of B is not required.

In physical coordinates, the deflection of the plate W(X, F, T) satisfies the linear elastic
plate equation

n Id'W S4IV 8*W \ 82W _
\dX4 8X2 8Y2 BY4 I P 8V ( ^

* Received November 17, 1977. The author would like to express his appreciation to Professor J. D. Cole for
his many contributions to this paper. This work was supported by the National Science Foundation under Grant
No. ENG 76-81574.



142 R. S. CHADWICK

o
Fig. 1. Planform geometry of plate.

where

D = -jL EH3/(1 - a2). (2.2)

E is the modulus of elasticity, H is the plate thickness, a is Poisson's ratio, and p is the
density of the material. All edges are assumed to be simply supported, which requires that
the deflection and bending moment vanish on the edges.

Dimensionless coordinates {x, y) are introduced by scaling the longitudinal coordinate
with the plate length, and the transverse coordinate with the characteristic half-width:

x = X/L, y = Y/B. (2.3)
Since the free vibrations of the plate are to be determined, we look for a solution of the

form

W(X, Y, T) = w(x, y) cos 07. (2.4)

Then the plate equation (2.1) becomes

d*w „ „ „ 8*w , 8*w
dy<   Sy2 £< (2"5)

where t = B/L is the slenderness ratio and a> = {pHB*/D)U2{2 is a dimensionless frequency.
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The zero-deflection boundary conditions are written as

w(0,>>) = 0, M<G(0); (2.6)
w( 1, y) = 0, |>'|<G(1); (2.7)

w(x, ± G(x)) = 0, 0 < x < 1. (2.8)

The exact form of the zero-moment boundary conditions are

(d2w/dx2)(0, y) = 0, M<G(0); (2.9)

(82w/8x2)(\,y) = 0, M<G(1); (2.10)

d2w d2w
(x, ± G(x)) + eV (x, ± G(x))

+ e2G'2(x) ± G(x)) + a -j^-{x, ± G(x))

=F 2(1 - cyG'{x)^-(x, ± G(x)) = 0, 0 < x < 1. (2.11)
ox oy

The prime designates differentiation with respect to x. Eqs. (2.9) through (2.11) are
obtained from the dimensional relation for the edge moment ME given by

( 82W , 82W \ , . _ ( 82W , 8*W\
Me D |COs26 \8X2 + * 8Y2 )+ sin26 \ sy2 + ° 8X21

82W 1+ (1 - a) sin 20 = 0 (2.12)

where 6 is the angle between the outward normal to an edge and the X axis (cf. Love [2, p.
465]). Eqs. (2.5) through (2.11) define the exact eigenvalue problem.

3. Expansion procedure. The full eigenvalue problem thus defined does not lend
itself to an exact analytical solution for a general G(x). To proceed, we must systematically
utilize the slenderness of the plate, i.e., e « 1, for our immediate application. To begin
with, we also consider the special case where G(x) is a smooth monotonic decreasing
function with G'(0) < 0.

We postulate the existence of a boundary layer transition near x = 0, where the
maximal vibratory activity occurs. This is reasonable on physical grounds since we expect
the largest amplitudes to occur near the wide end of the plate where the compliance is
greatest. We are also motivated by the known behavior of the exact solution for a narrow
circular sector plate (cf. Sec. 8).

The longitudinal coordinate in this region is stretched by introducing a new variable

x* = x/5(e) (3.1)

and we consider the limit process e -» 0 with (x*, y) fixed. 5(c) is a measure of the thickness
of the transition layer and its dependence on e must be determined during the course of the
solution.

We assume expansions for w(x, y) and u in the form

w(x, y) = w0(x*, y) + 7,(e)wi(x*, y) + y2(e)w2{x*, y) + • ■ ■ (3.2)

« = a + r1(e)0 + T2(e)n + ■ ■ ■ (3.3)
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where a, /?, n, ■ ■ ■ are unknown constants, and 7i(e), y2(c), ' ti(0> t2(«), • • • , are
unknown scale factors.

4. First-order problem. The plate equation is written in terms of the stretched longi-
tudinal variable x* by replacing 8/8x with 5-1(t) 8 /8x*. Substitution of the expansions,
Eqs. (3.2) and (3.3), into Eq. (2.5) then yields to first order

Uw0 = - «V„ = °. (4.1)

In obtaining Eq. (4.1), we have assumed e/<5(e) —> 0; otherwise Eq. (2.5) would retain its
full structure and we would not obtain a distinguished limit equation. Note that L„ is just
the beam operator. To the same order, the zero-deflection boundary conditions are

w„(0, ,y) = 0 \y\ < a (4.2)
w0(x*, y) -» 0 as x* — °° (4.3)

w0(x*, ±a) = 0 0 < x* < °° (4.4)

where we have written G(0) = a. Similarly, the zero-moment conditions to first order are

(<92w0/<9x*2)(0, y) = 0 |_y| < a, (4.5)
r\ 2

0 0 as x* —> (4.6)8x*

8 w.
sy2

(x*,±a) = 0 0<x*<™. (4.7)

In this approximation the planform is a semi-infinite strip of width 2a.
The solution to Eq. (4.1) is simply

(48)

where the cosine and sine correspond to symmetric and antisymmetric transverse modes,
respectively. To satisfy boundary conditions on y = ±a, it is necessary that

7r
Jan = (n — 1/2) —; n = 1, 2, • • • symmetric modes

n = 1,2, • • • antisymmetric modes. (4.9)

At this point, A0(x*) is still arbitrary and must be determined from the second-order
problem. We do know, however, from Eqs. (4.2) through (4.6) that ^0(x*) must satisfy

^„(0) = (cP/dx*2)Ao(0) = 0, (4.10)
A0(x*), (d2/dx*2)A0(x*) -> 0 as x* -> (4.11)

Eq. (4.9) provides the first approximation to the eigenvalues, which correspond to the
natural frequencies of a beam having length 2a. The an provide a lower bound to the exact
eigenvalues, since the corrections will be shown to be positive. This is to be expected, since
A0(x*) represents, in effect, a coupling between "adjacent transverse beams" which tends
to increase the potential energy stored in bending.
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5. Second-order problem. The most complete equation of order 7^) is obtained if
= 7i(0 = fV<52(0, giving

r\ 4

LftWj = 2an0wo - 2 2 = R°w° ■ C5-1)

Assuming G(x) has a Taylor series expansion near x = 0, we can expand Eq. (2.8) as
follows:

w0(x*, ±a) ± 5{e)x*G'{0) (x*, ±a) + 7i(e)w1(.x*, ±a) + 0{82) = 0. (5.2)

A similar expansion exists for the zero moment condition on the curved edge (Eq. (2.11)):

±a)±5(e)x*G'(0)^(x*, ±fl) + 7l(£)^(**, ±a) + 0(<52) = 0 (5.3)

where we have used

(82w0/8x*2)(x*, ±a) = 0 (5.4)

from Eq. (4.8). Notice the dominant term in each of these expansions has already been set
equal to zero in the first-order problem.

To achieve the most complicated balance of terms in Eqs. (5.2) and (5.3), we set 5(e) =
7i(e)> from which we can now determine

5(e) = 7i(e) = r^e) = eV52(e) = e2/3. (5.5)

The boundary conditions for the second-order problem can now be written as

Wi(0, y) = 0, \y\ < a, (5.6)
Wi(x*, y) -> 0 as x* -> (5.7)

*>,(*♦, ±a) = Tx*G'(0)(8w0/8y)(x*, ±a), 0 < x* < °°, (5.8)

(°> y) = 0- \y\^a, (5.9)8x'

82wt
8x*2

/..* , _x _ 03w>

(x*,y)—> 0 as x* —> °°5 (5.10)

8y2 (x*, ±a) = =Fx*G'(0) (x*, ±a), 0 < x* < ®. (5.11)

The general solution of Eq. (5.1), substituting Eq. (4.8) in the right-hand side, is

*,(,•.,) = Aix-) {CM f" 4 + { C0S.h f ■ ̂I sin y I ( sinh Jotny

4-+ha) *:■"}■ (5.12)2 Jan\ax*2 / (cosJanyJ

Choosing #i(x*) = 0, we can satisfy Eq. (5.8) provided that

d2A0/dx*2 + (/? - 2an A0 = 0 (5.13)

where we have written k2 = -G'(0). Eq. (5.13) holds for both the symmetric and
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antisymmetric transverse modes. The zero-moment condition, Eq. (5.11), leads (fortu-
nately) to exactly the same equation for A0(x*).

Eq. (5.13) can be obtained more directly by considering the following solvability
condition for Eq. (5.1):

/•( cos*.,} p/cos*.,}
J-a\ sin Jany ) J sin jan y )

where the cosine is used for the symmetric case and the sine is used for the antisymmetric
case.

Eq. (5.13) can be transformed into the standard form of Airy's equation with the
transformation

x* = x0 + X z. (5.15)

Choosing

x0 = /3a/2anK2\ X = (a/2anK2Y'3, (5.16)

Eq. (5.13) then takes the form

~Ao(z)-zAo(z)^0. (5.17)

^ (x* - x0) (5.18)

The appropriate solution which satisfies Eq. (4.11) is

A0{z) = A,(z) = At

where /l,(z) denotes the Airy function. To satisfy Eq. (4.10) we must choose

-x0/X = pm , m = 1,2, •••, (5.19)

where pm is the wth root of the Airy function. From Eqs. (5.16) we can determine the first
correction to the eigenvalues

Pnm = -pm(2anK2/a)2/\ n, m = 1, 2, • • • . (5.20)

Since all pm < 0, the /3nm are necessarily positive.
With A0(x*) now determined, we have fully determined >v0(x*, y) and wi-11 not be

concerned with exponentially small deflection and bending moment at x = 1. ^0(x*) is
shown by the solid line in Fig. 2 for the case n = 1, m = 5, and a planform geometry
discussed in Sec. 8. For this particular case the transition point 5x0 = 0.208. For.* > 5x0,
the deflection decays exponentially, and for x < 8x0 the function has an oscillatory
behavior. The longitudinal extent of the transition layer is 0(e2/3). For this case, e2/3 —
0.042, and we see that me2/s ^ 0.211 gives quite accurately the thickness of the transition
region, as well as locating the transition point.

We now restate the essential results which emerge from the solution to the order which
we have calculated. The first-order solution directly yields both the first approximation an
to the eigenvalues which depend only on the maximum width of the plate, and the
transverse shape of w0 . The longitudinal shape of vv0, and the second approximation /3nm
to the eigenvalues, are determined from the second-order problem. The slope of the curved
edge at the maximum width enters at this stage, but further details of the shape have only a
higher-order effect. The difference between successive eigenvalues is e2/3 (3nm , indicating
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that the spectrum is relatively dense. The point of maximum amplitude (located slightly to
the left of <5x0) moves monotonically to the right with increasing m. This contrasts with the
behavior of a long narrow rectangular plate which has a slightly denser spectrum (order e
between successive eigenvalues), but the points of maximum deflection jump back and
forth from one end to the other.

6. Third-order problem. For numerical results, it can be important to carry out the
calculations to third order (cf. Sec. 8). Also, the third-order problem illustrates the need
for introducing a thinner, order-e edge layer near x = 0, which is needed to satisfy the
boundary conditions. If the plate were clamped at x = 0, /10(**) could not satisfy the zero
slope condition at x = 0, and an edge layer would be required even in the second-order
problem.

The most complete third-order problem is obtained by choosing

72(e) = r2(e) = e4/3 (6.1)

which yield, after some reduction, the following problem:

Lbw2 = (finm2 + 2ann)w0 - + 2an /3nm w, - 2 -, w,} (6.2)

where

w2(0, y) = 0 \y\ < a, (6.3)

w2(x*, y) -> 0 as x* -> °°, (6.4)

w2(x*, ±a) = ±x*k2^l (x*, ±a)
By

=F ix*2G"(0)^^(x*, ±a) 0<x*<co; (6.5)

(d2w2/0x*2)(O, y) = 0 |>>| < a, (6.6)

(82w2/8x*2)(x*, y) -* 0 as jc*-♦ oot (6.7)

±a) = ±x*k2^-(x*, ±a) =F 2k2 (x*, ±a)

=F \x*2G"{0) (x*, ±a), 0 < jc* < 00. (6.8)
S3w0
dy3

The quantities which we would like to determine are A^x*), which would completely
specify wx , and n, which is the third approximation to the eigenvalues. This can be
achieved most simply by considering the solvability condition for w2:

f Hf"} W,- f | cos ^ jn. w^dy
J-a { sin Jany I J.a { sin Jany) (6.9)

where, again, the cosine is used for the symmetric transverse modes, and the sine for the
antisymmetric modes. From Eq. (6.9) we find for both cases

(PA
dx*2

L 1 (o 2x2an „\ _ a , ( 3K2an G"(0)an\
2 "I" yPnm a x J A1 ^ dx* ^ \ a2 a / X 10)
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The particular solution of Eq. (6.10) has the form

A Ax*) = anx*2-^A0 + al2.x* j^A0 + anx*A0 + au~A0, (6.11)

where the coefficients are

_3_ k2 1 G"(0)
Qu 10 a 10 k2 '

(6.12)

„ = 1 _ _L PnmG"{0)a
12 r i r 4 j

5 an anK

. _1_ k2 1 G"(0)
an 5 a 10 k2 '

n a ( 2 P™ 2 @nm2G"(0)a \
14 2K2an\ 5 an 15 anK* ^1

The homogeneous solution is proportional to A0(x*) and can be added to the first-order
solution which has an arbitrary amplitude.

^(.x*) must satisfy the boundary conditions

A^) = -£i-2AA 0) = 0. (6.13)

From Eq. (6.11) it is seen that to satisfy ^4i(0) = 0, we must choose aH = 0, since (d/
dx*)A0(0) 4 0. However, a problem quickly arises when we notice that even with the
choice au = 0, (d2 / dx*2)A A®) - 0 cannot be satisfied. Thus, we must seek another
solution, valid in an edge layer near x = 0, which satisfies zero-deflection and zero-
moment boundary conditions on x = 0 and asymptotically matches the transition layer
solution.

Before proceeding to the edge layer problem, we expand the transition layer solution in
an intermediate variable and obtain an expression which must match, term by term, with
the edge layer solution expressed in the same variables. We therefore introduce

x„ = x/ri(e) (6.14)

where e « 77(e) « e2/3 as e —> 0. Notice that the transition layer variable, when expressed
in terms of jt„ , is

x* = (»?(e)/e2/3)jt„ . (6.15)

So x* —> 0 as e —> 0, with x„ fixed. Calculating the limit, we find

i- / \ J COS Janylim w(x„ , y) = \ ■v " " sin pny€—0
x„ fixed

+ t2/3YA>'(p>") + rix*TAi'{pm) —)
e2,3J+ 0 t; (6.16)

where the primes designate differentiation with respect to the argument of the Airy
function.

For the edge layer we introduce the following stretched longitudinal variable:

x = x/t (6.17)
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and the expansions

w(x, y) = A0(()h0(x, y) + A^e)^*, y) + •• • , (6.18a)

u = a + t2/3/3 + f4/V + • • • . (6.18b)

Substitution of Eqs. (6.17) and (6.18) into the full problem defined by Eqs. (2.5) through
(2.11) then yields, to first order,

r i, — ^ 8*h0 8*h0 , n trLpho = ~W+2JfW* +-d¥-aWo = 0> (619)

where

Ao(0, y) = 0, \y\ < a, (6.20)
h0(x, ±a) = 0, 0 < x < co, (6.21)

{82h0/8x2)(0, y) = 0, \y\ < a, (6.22)

(82ha/8y2)(x, ±a) = 0, 0 < x < (6.23)

In (x, y) coordinates the full plate equation must be solved, but in a simplified domain
which is a semi-infinite strip having constant width 2a.

The appropriate solution to the first-order problem with no exponential growth is

£,"£}• (6 24)
where C0 is an arbitrary constant. Rewriting Eq. (6.24) in terms of xv , we have

€-•0
xn fixed

lim (6.25)

Comparing Eq. (6.25) with Eq. (6.16), we must choose

A0(e) = el/3, (6.26a)

C0=jAi'(Pm) (6.26b)

so the leading term will be matched.
Proceeding to the second-order edge layer problem, we have:

Lphx = 2a/3 h0 (6.27)

and the same boundary conditions as Eqs. (6.20) through (6.23) with h0 replaced by hx . In
obtaining Eq. (6.27) we have set

Ai(e) = c2/3A0(e) = e. (6.28)

The appropriate solution of Eq. (6.27) with no exponential growth is

hii*> = {sill f" v} f3 + c4 (6-29)l. sin Jan y J I 6 I

where Cj is an arbitrary constant that will be determined by matching. The edge layer
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solution to second order, when written in terms of xv , is

+ • • • . (6.30)
e—0

xn fixed

lim = Jcos^y
sin -\any

C 1Lv - + r nr2/3 ■*>> c 2 ' W7/-*!)

Comparing Eqs. (6.16) and (6.30), we see that the first terms match by virtue of Eq. (6.26).
The cubic terms match, which can be checked by using the identity A"'(pm) = pmAt'(pm)
and Eqs. (5.16) and (5.20). The remaining linear term matches if we set

Cl = ^A,'(pm). (6.31)

Since a constant term does not appear in Eq. (6.30), we must set

= 0, (6.32)

which finally yields a condition for the determination of n, the third approximation to the
eigenvalues. Thus, from Eq. (6.12),

_ 2 pnm2 2 0nm2G"(O)a .....
V-nm c , f 4 (6.33)5 a„ 15 anK

for both the symmetric and antisymmetric transverse modes. Notice that \xnm < 0 if G"(0)
> 3K*/a.

7. Case with two transition points. When a planform has a local maximum width
someplace away from the ends (such as a long narrow, elliptical planform) the same
methods can be applied. Suppose the width attains a maximum at x = £, 0 < £ < 1, with
the local geometry given by G(£) = a, G'({j) = 0 and G"(£) = —r3. Introducing, as before, a
stretched longitudinal variable

5(e)

and assuming the expansions given by Eq. (3.2) and (3.3), we find

5(e) = e1/2, (7.2a)

Yi(«) = r,(e) = e. (7.2b)

The transition layer is now slightly thicker than the previous case, whereas the magnitude
of the first eigenvalue and eigenfunction corrections are smaller. The first-order solution is
again of the form

w„(x*,>') = ^0(x*){COS>n>'} (7.3)
I sin Jany I

with the ans given by Eq. (4.9). However, the amplitude equation for /40(**) is now, for
both the symmetric and antisymmetric transverse modes,

d>
■A0(x*) + (/3 - ^ x*2) A0(x*) = 0 (7.4)

dx*2

which has two turning points located at

x* = ±Wa/anr>y\ (7.5)
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The boundary conditions for A0(x*) are

Ao(x*),-j^Ao(x*)->0 as | x* | —> °°. (7.6)

At first sight, it appears that since the domain is the entire real axis, /3 could take on
continuous values and still satisfy the boundary conditions of Eq. (7.6). This would
contradict the fact that the spectrum is known to be discrete for the physical (unstretched)
domain which is finite. This apparent difficulty is resolved by noticing that Eq. (7.4) has
the same form as Schrodinger's equation for the wave function of a simple harmonic
oscillator, where exactly the same problem arises. Following the discussion of Mott and
Sneddon [3], we see that Eq. (7.6) can be satisfied only if /3 takes on the particular discrete
values

anr2 Y/2
a(3nm = (2m - 1) , n, m = \,2, ■ ■ ■ (7.7)

which is the analogue of the quantized energy levels of an oscillator. The solution of Eq.
(7.4) is then

A^x*) = exp (-$z2)Hm(z) (7.8)

where Hm(z) are the Hermite polynomials

dm
Hm(z) = (-1T exp (z2) — exp (-z2) (7.9)

where

//V ^ V/<
(7.10)- (*£)"

A plot of A0(x) is shown for the case n = 1, m = 9, for a half-elliptical planform shown in
Fig. 4. When m is odd, the zero-deflection and zero-moment boundary conditions are
satisfied with £ = 0. For this case (e = 0.00867), the positive transition point is located at x
=* 0.217.

8. Numerical results. As an example, we consider a trapezoidal platform with length
30 mm, maximum half-width 0.26 mm, and a minimum half-width 0.04 mm, correspond-
ing to the dimensions of the basilar membrane. The results for the non-dimensional
eigenvalues computed from the series expansion, Eq. (6.18), are given in the first three
columns of Table I. Shown in the last column are the results for a circular sector planform

Table I. Eigenvalues for trapezoidal planform (first three columns) and circular sector (last column).

Circular
1 term 2 terms 3 terms sector

«„ 2.467 2.723 2.734 2.734
uu 2.467 2.915 2.947 2.948
o)13 2.467 3.072 3.131 3.133
o)u 2.467 3.210 3.300 3.305
<d„ 2.467 3.337 3.460 3.468
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having the same opening angle and maximum half-width as the basilar membrane. The
eigenvalues are computed from the exact frequency equation for a simply supported
sectorial plate

2uJv(u)h{u) - (1 - <r) I„+1(u) Jv(u) - (1 - (t) JXu) /„+i(m) = 0 (8.1)

where u> = d02 u2, with 260 being the opening angle, and v = 7r/20o . For the case considered
d0 = 0.00734 radians and v = 214. The Jv are Bessel functions of the first kind of order v,
and are computed using the Hewlett Packard HP-65 MATH PAC 2-21A Bessel function
program. The /„ are modified Bessel functions of the first kind and are evaluated using
their asymptotic expansions for larger orders. The roots of Eq. (8.1) are found by trial and
error using linear interpolation. By comparing the third and fourth columns in Table I it is
seen that the three-term expansion for the eigenvalues compares favorably with the exact
solution for the circular sector. As the longitudinal mode number increases, the error
increases. For m = 5 the error is eight parts in a thousand. It was found that for a < 1, the
roots of Eq. (8.1) are independent of a. This agrees with the asymptotic theory where, to
third order, the eigenvalues are independent of <r. The numerical results also indicate that
the difference between the circular sector planform and the trapezoidal planform has no
effect on the eigenvalues, as is also suggested by the asymptotic theory. The reason for this
is that the deflections are exponentially small in the region near the vertex of the circular
sector.

The solid line in Fig. 2 shows the first-order centerline deflection of the trapezoidal
planform for n = 1 and m = 5, with the amplitude in arbitrary units. The second-order
centerline deflection is shown in Fig. 3. The dotted line in Fig. 2 is the sum of the first- and
second-order centerline deflections. Fig. 4 shows the first-order centerline deflection of a
half-elliptical planform having the same length and maximum width as the trapezoidal
planform, for the case n = 1 and m = 9. The qualitative similarity between this curve and
the solid curve of Fig. 2 should be noted.

When calculating the roots of Eq. (8.1) for v » 1, it was found numerically that the
second and third terms have a negligible effect. That is, to the accuracy of the calculations,
the roots of J„(u) = 0 have been found. This suggests that the series expansion

= an + e2/3 0nm + e4/3 nnm + • • • (8.2)

J //"
0.4 0.9 1.0

X —-

Fig. 2. Centerline mode shape of trapezoidal planform; n = 1, m = 5, e = 0.00867. one term of asymptotic
expansion; two terms of asymptotic expansion.
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A,M

0.9 1.0

Fig. 3. Second-order centerline mode shape of trapezoidal planform; same parameters as in Fig. 2.

can be used to generate an asymptotic expansion for the zeros of Jv when v » 1. Denoting
the mth root of Jv by jVtTn , we have

Mim = km 62 + O(04„)- (8.3)

Substituting Eq. (8.3) into Eq. (8.2) with n = 1, and using Eq. (4.9) for symmetric
transverse modes, Eqs. (5.20) and (6.33), and solving fory'„,m » we find

km = V - pm(v/2y>3 + ^ Pm\v/2)-1'3 + 0(v->). (8.4)

Eq. (8.4) provides an explicit relation for the mth zero of J„ when v » 1, in terms of pm ,
the mth root of the Airy function At which is tabulated; this equation agrees with a
formula given by Olver [4] which he obtained by an independent method.

9. Some further comments. An asymptotic theory is developed for the determination
of the eigenfunctions and eigenvalues of a long narrow, simply supported plate having a
general planform shape. The theory is accurate provided the longitudinal mode number is
not too large. For large longitudinal mode numbers, the present theory does not apply and

A0M

Hh0.4 0.9 1.0

■X -

Fig. 4. First-order centerline mode shape of semi-elliptical planform; n = 1, m = 9, e = 0.00867.
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a different expansion procedure must be devised. This problem is considered by Chadwick
[5] in a companion paper. It should be emphasized that the idea of the transition layer
near the wide end of the plate is still valid for other boundary conditions, although each
case must be examined separately.

The methods presented here also can be used to determine the modes of long narrow
membranes, as well as other problems set in "thin domains" such as the acoustic modes
of a gas in a long thin tapered duct.
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