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1. Introduction. In this paper we consider two-degree-of-freedom Hamiltonian sys-
tems of the form:

H = %(ylz + y22) — QX1 X2 + %(al + az)(xlz + x22) + § [bl(xl4 + xZ4) + bz(xl - X2)4] (1)

where a; , b, > 0;a,, by, e 2 0.

For example, such a system may arise in nonlinear mechanics in the following way.
One considers the idealized spring-mass system pictured in Fig. 1, where the outside
springs are identical, both masses are equal to one, and the system is constrained to move
horizontally. The displacements from equilibrium are denoted by x, and x, , with y, = x; .
If the springs exert nonlinear restoring forces Fi(A) = a,A + eb,A® corresponding to a
displacement A, then the equations of motion form a Hamiltonian system with the above
integral. In what follows, it may be useful to keep this model in mind.

Associated with the system defined by (1) are two normal modes of vibration. The in-
phase mode is the periodic solution defined by x, = x,, y, = y, and the out-of-phase mode is
defined by x, = —x,, y; = —y, . We are interested in the iso-energetic stability of these
modes; that is, we fix a total energy 4 for the system and ask whether the given mode is
orbitally stable in the energy surface H = h. This question has been treated by several
authors ([3, 8, 9]) under various assumptions, usually for weak nonlinearity (small ¢) or
small energy. For example, in [3] it was shown that if the a; , b, satisfy certain conditions,
then the in-phase mode is iso-energetically stable for fixed ¢ and all sufficiently small & or
for fixed & and all sufficiently small e. The methods used cannot give information about
large values of eh. The purpose of this paper is to deal with stability for arbitrary values of
these parameters.

For the in-phase mode our results are summarized in the following

THEOREM. Fix a, , a; and b, . There exist numbers &, and k, depending on a, , a, and
by , with 0 < k; < k, < o, such that if ek lies in the set D = [0, k,] U [k, , =) then the in-
phase mode is elliptic or parabolic (in the surface H = h) while if ek lies in the set H = (k, ,
k;) it is hyperbolic (and hence unstable). Moreover, if a, # 0, then there is a set E of
measure 0 in D such that the in-phase mode is iso-energetically stable for all values of ek in
D-E.
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FiG. 1.

Thus, if a, # 0, the mechanical system of Fig. 1 will be unstable for a bounded
(possibly empty) set of values of e and on the complementary set will ““almost always” be
elliptic stable, even for strong nonlinearity and high energy.

Remarks. (1) The terms elliptic, parabolic and hyperbolic refer to the eigenvalues of the
linearized Poincaré map (see Sec. 2) around the appropriate mode. In our context there
are two eigenvalues, necessarily inverses, say A and A ™!, and the mode is elliptic, parabolic
or hyperbolic according as these have non-zero imaginary parts, are equal to +1, +1 or
—1, —1, or are real and unequal, respectively.

(2)If0 < a,/a, < 3/2thenk, = k, , i.e., there is no hyperbolicity. If a,/a, > 3/2 then k,
< k; and these transitions to and from hyperbolicity are explicitly computed in Sec. 5.

The proof of the theorem depends on a study of the eigenvalues mentioned in remark
(1) and on the Arnold-Moser-Russmann criterion which is based on the results of [1], [7],
and [10] and which we now summarize.

Let H consist of those complex numbers u of modulus one such that for some positive
constants ¢, v we have |u* — 1| > cn=* forn = 1, 2, --- . The complement of H has
measure 0 in the unit circle (see Appendix 1).

Consider an area-preserving real analytic map P of the form

x'=ax+ by + ---
P:
y=cx+dy+ -

where the omitted terms represent power series beginning with terms of order at least 2
and converging in some neighborhood of the origin. Finally, suppose the eigenvalues of
the linear part of P are complex conjugate (therefore, since P is area-preserving, necessar-
ily of modulus 1).

Then, the origin is a stable fixed point of P provided the eigenvalues belong to H.

The next four sections are devoted to the proof of the theorem. We reduce the
variational equation to a Lamé equation and analyse the eigenvalues by means of a
stability chart. (We remark that a similar technique was used in [4] to study periodic
solutions of a different Hamiltonian system, the behavior of the eigenvalues, in that case,
being governed by a Mathieu equation.) The out-of-phase solution, which behaves in a
more complicated way and for which our techniques yield only partial results, is discussed
in Sec. 6. We have included appropriate background material at various points to make
the exposition more self-contained.

2. Reduction of the variational equation. We now fix a Hamiltonian of form (1) and
consider the in-phase solution w,(¢) defined by x, = x, , y, = y, . Denoting each of the two
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identical components by (x(z), y(t)), we see that x and y form a Hamiltonian system with
Hamiltonian H given by

— l 2 ﬂ 2 e_b_l 4
3 y:+ > X + 7 <
If the total energy in the system is A, then the energy of each component is #/2. The
system corresponding to H can simply be written as Duffing’s equation:
X +ax + bx® =0 a=a,,b=¢b,. 2)

The solution of (2) satisfying x(0) = x, , x(0) = 0 may be written in terms of the Jacobi
elliptic cosine [5]:

x = Xxo ch(u, A\?);
¢
t=(a+ bx?)" 2 u, u= f (1 = Nsin?y)"Y2 4y, 3)
0

A2 = b bxo¥a + bxy?)7!, cn(u, A\*) = cos ¢ (by definition).

In order to discuss the iso-energetic stability of w,(¢) we need to compute the linearized
Poincaré map of nearby solutions in the energy surface H = h. This is accomplished by
computing the principal matrix solution Z(¢) of the associated variational equation. The
rest of this section is concerned with expressing the variational equation in a suitable form.

Let

w/2
K(\?) =f (1 = A%sin®y) "2 dy;
0
thus cn(u, A?) has period 4K(A?). Define T(A?) by T(A?) = 2K(A?).

We shall need the Hessian H,, of H evaluated along w,(¢). From (1) and the relations,
X1 = X3 = X, yy = y; = y, one finds:

a, + a; + 3e byx? —a, 00

—a, a+a,+3bx* 0 0

Hys(wy) = 0 0 1 0
0 0 0 1

(Here and below, we suppress the arguments of functions when no confusion can result.)
The variational equation around w, is the matrix equation

0 I
z= (_1 0) Hyu(wy)z,

and we seek the principal matrix solution, i.e., the matrix Z = (z;;) such that Z(0) = I, .
Writing this equation in coordinates, we obtain:

2y = 2Zy, Zy = —Azy — Bzy,
Z.zj = 24, Z.U = _BZU - Asz .

or simply:

El/ = _AZU - Bsz N 2.2/ = _BZU —AZZJ
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where 4 = a, + a, + 3ebyx*, B = —a, .
To uncouple this system we introduce the variables
Uy = 2yt 2oy, Uy = 2y — 2y
Then the u;; satisfy:
ty = —(a, + 3ebix®uy, , _ 4)
lyy = —(ay + 2a;, + 3ebix®)uy; . &)
In view of the initial conditions
11(0) = 1, u12(0) = 1, u3(0) = 0, u,(0) = 0,
u1(0) = 0, 14;5(0) = 0, 4;5(0) = 1, uy,(0) = 1,

we see that uy; = w;; and w3 = wy, . In a similar way, 4y, = —uy; and uy, = — s .
We now transform Egs. (4), (5) into Lamé equations as follows. By (3), x = x, cn(u, A\?)
with u = (a + bx,*)"?t. Using the identity x* = x*(1 — sn*(u, A\?)) Eq. (4) becomes:

iilj = _(al + 3b1X02 - 3fb1szsn2(u, )\2))141] .

Writing this in terms of the variable ¥ we have:

Aoy o_ a; + 3ele02 3€b1x02
Uy, = — -

2 2 1
sn*(u, A )u
a, + 6b1XO2 a, + 6b1X02 ( ’ ) Y

where 4,,(u) = u,,(t) and prime denotes differentiation with respect to u. Recalling from (3)
that A? = kb xo%(a; + ebixo?)™!, we finally obtain in place of (4) the equation

dy" + (N2 + 1) — 2-30% sn®(u, Ay, = 0, (6)
with initial conditions:

40)=1,4,/00=0, j=12
4/0) = 0, 4,/(0) = (a + bx,*)"'%,  j=3,4.
Similarly, Eq. (5) may be rewritten as:
" + (AN2 + 1 + 2a5(a; + ebyixo?)™t — 2-3N% sn? (u, AB))idy; = 0 @)

with initial conditions:

Ug(0) = (= 1Y%, 4,/(0) =0 for j=1,2

iy/(0) = 0, &,/(0) = (—=1)Y~"Ya + bx,?)~* for j=3,4.

We conclude this section by computing x, in terms of the other parameters of the
problem. By the definition of H and the subsequent remark, we have:

ebixot + 2a,x,2 — 2h = 0.

Solving for x,* gives
x02 = (alz + 2h€b1 - al)l/z/fbl (8)

Then from (3) we obtain.

A=} — a,/2a? + 2heb,)" 9)
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We also have the useful relation

202 - 2a2 .
a, + 6b1X02 ((112 + 2h€b1)1/2

3. The eigenvalues of Z(7). We must now examine the eigenvalues of the linearized
Poincaré map followed through one full period 7 of the in-phase solution.

Since the tangent vector along the orbit of w,(¢) and the normal to the energy surface H
= h are invariant under Z(7), two of the eigenvalues are 1. Furthermore, det Z(r) = 1 by
the Hamiltonian character of the flow. Thus Z(7) is a 4 X 4 matrix satisfying det | Z(7) —
wul| =(u — 1)*(u® + Bu + 1) for some constant B. The coefficient of u® on the left-hand side
is —Tr Z(r) and in the right it is B — 2. With this is mind we see that the two remaining
eigenvalues of Z(r) are:

(10)

A =D =2+ (DD — 4))”7], (1)

where D = Tr Z(7).

Our task is now to express Tr Z(7) in terms of the solutions #;; of the Lamé equations
(6) and (7). Using the relations between the z; , u;; and 4, of the previous section, one
finds:

TrZ(r) = Zz“(r)

= H(un + tg) + (12 — Uge) + (ths + thes) + (Uhis — Uze)]e=7
[y + thys) + (uar + tig3)]e-7
(G + ') + (g1 + tiza" )u =270

where, with a slight abuse of notation, we have replaced the old i;; by multiples which
have the initial values #,(0) = 0, ;,'(0) = 1, the effect being to enable us to write

it;5'(2T(\?)) =uy(7). Here it may be useful to note that 7, the *“t-period” of w,, is related to
2T(A\?), the “u-period” of w, , by the formulas

7 = (@ + 2heby) V2 2T(\?) = a,"Y(1 — 2A%)2T(A\?)

which may be obtained using (3), (8), (9) and (10).

To further reduce the expression TrZ(r) we use the following general result about
Hill’s equation with periodic coefficients.

LemMA ([2, 6]). Let y, and y, be solutions of " + Qy = 0 where Q is periodic with
period P and symmetric, Q(«) = Q(—u). Moreover, suppose y, and y, are normalized:
y'(0) = 1, 3" (0) = 0 p5(0) = 0, ,'(0) = 1. Then:

i) yi(u £ P) = p(P)n(u) £ /' (p)ya(u);

i) y(v £ P) = £y(PIni() + yo'(P)ye(u);

i) yi()ye' () = ya(up'(u) = 1

iv) y(P) = »,/(P).

Applying the lemma to the solutions #,, and #,; (which are now normalized) of Eq. (6),
we may write:

un(2T) + iy’ (2T) = @™ (T) + i (T T) + ' (T T) + ws™(T)

= 212112(T) + 2[1211(T)ﬁ13’(T) - l]
= 412112(T) - 2.
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In a similar way, we have:

U (2T) + 6’ (2T) = 4 4, %(T) — 2.
Substituting in our last expression for TrZ(r) now yields:

Tr Z(7) = 4[4, (T) + 4,,XT) — 1].

Now it can easily be checked that the function sn(u)-dn(u) satisfies Eq. (6) and has
initial values coinciding with those of our modified ;5. Hence

(T) = 64, (T) = en Tdn®T — Nsw*Tdn T = —1.
Thus we finally obtain:
TrZ(r) = 4i,%(T).

From this equation together with formula (11) we see that 0 < #,,%(T) < | implies the in-
phase solution is elliptic, &,%(T) > 1 implies it is hyperbolic and ,,(T) = 0 or 1 implies it
is parabolic.

It remains to examine how the value of #&,(T) varies as a function of eh.

4. The stability chart of a special Lamé equation. Note that Eq. (7), which deter-
mines #, , is a special case of the Lamé equation

V't (@ — 6M* sn(u, A?))y = 0. (12)

By constructing the stability chart of (12) we shall be able to track the values of i, as ek
varies from O to «, and ultimately to reach the main theorem.

To begin with, we summarize briefly some information about (12) or, more generally,
about Hill’s equations having the form

V't (et Qw, B8))y =20 (13)

where a and 8 are real parameters, Q is sufficiently smooth in ¥ and 8 and periodic in u
with period T depending on 3. Modulo the extra parameter 8 (which is present in our
problem but does not affect what we are now going to say), this material can be found in
[6]. The discriminant of Eq. (13) is the quantity A(a, 8) = y,(T) + y,'(T), where y,(u) =
vi(u; a, 8) are normalized solutions of (13); that is, they are the unique solutions satisfying
»1(0) = 1, »,/'(0) = 0, y2(0) = 0, y,'(0) = 1. In case Q is symmetric, one can, by the lemma
quoted in the previous section, write the discriminant as A(a, 8) = 2y,(T). Eq. (13)
possesses solutions of period T, 2T, respectively, precisely when A(a, 8) = 2, —2 respec-
tively. The curves A(a, ) =+2 divide the «, 8 plane into alternating so-called stable and
unstable regions in which A* < 4, A* > 4 respectively. (The stability, of course, refers to
(13) and not directly to our Poincaré map.) It can happen that instability regions collapse,
leaving stability regions separated by a curve A = +2. The stability chart consists of the
stable and unstable regions and the curves A = £2. Such charts exist for the Mathieu
equation [5], but do not seem to have been constructed for the more difficult Lamé
equation, particularly with the modulus of ellipticity taken into account.

Our Lamé equation (12) is of the form (13) witha = @, 8 = A%, Q = —6A2sn?(u, A\?). We
begin by observing that (12) has the following periodic solutions [1, p. 205]:

y=1—a/2sn*(u, \*) whena = 2((1 + A?) — (A\* — A2 + 1)¥/?), period T(\?),
y = cn(u, N*)dn(u, \*) whena = 1 + A2, period 2T(\?),
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y = sn(u, \¥)dn(u, \*) when a = 1 + 4X%, period 2T(\?),
y = sn(u, \*)cn(u, \*) when o = 4 + A%, period T(\?),
y=1—a/2sn*(u, \?) whena = 2((1 + A%) + (\* — A2+ 1)), period T(A\?).

Thus each of the above curves a = «a(A?) is a boundary curve of a stability region (see
Fig. 2). On the other hand, a Lamé equation of the form y” + (a — n(n + 1)\%sn®(u, \?*))y
= 0 has exactly n + | nondegenerate instability regions (see [6, pp. 103, 106]). In our case,
then, all instability intervals above the top curve collapse and we are left with Fig. 2.

Recall from Eq. (7) that we are interested in those equations of form (12) for which

a = 4A2 + 1 + zaz(al + 6b1X02)_1,
which with the aid of (10) can be written
a=4>\2(1—ﬁ) +2% 4,
a, a

For various values of a;/a, these form a family of lines which appear dotted in Fig. 2.
Here one should note, by virtue of (9), that as ek goes from 0 to o, A? tends
monotonically from 0 to 4. Thus as eh goes from 0 to «, the point («, A?) moves on the
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corresponding line from A% = 0 to A? = 4, and the quantity i, %(T) = &, (T, a, A\?) regarded
as a function of eh takes on values less than or greater than 1 according as («, A?) is passing
through a stable or unstable region.

5. Proof of the theorem. We fix values of a,, a, , b, and, consequently, a line a« =
4\*(1 — (a;/ay)) + 2(as/a;) + 1. To prove the first part of the theorem, we note that if 0 <
a;/a, < 3/2, then for all values of ek, (a, A?) lies in the second stability region. Hence for 0
<N <}, 14y*(T) < 1. Then the eignevalues will have non-zero imaginary part and w, will
be elliptic except with i, (T') = 0, where it is parabolic with eigenvalues —1, —1. When
a,/a, = }, the only change is that at eh = 0, w, is also parabolic with eigenvalues 1, 1. When
a, = 0 (which corresponds to purely nonlinear coupling in Fig. 1) we have i,, (T) = — 1
and w, is parabolic for all eh with eigenvalues 1, 1.

When a,/a, > § we have a non-empty range of hyperbolic values. The transition to
hyperbolicity occurs when 4\*(1 — (a;/a,)) + 2(ay/a,) + 1 = 2[1 + N>+ (\* — A2 + 1)'2].
Solving for A? gives A? = } — a,(3a, (a;, — a,)"?/4a, (a, — a,), and using formula (9) we find
that the corresponding value of eh and, hence of &, , is k; = (4a, (@, — a, ) — 3a,2)/6b, . In
a similar way one finds that the transition from hyperbolicity to ellipticity is given by k, =
4ay(2a, — 3a1)/9b, . For 0 < eh < k, and k, < eh we can say that w, is elliptic except when
iy (T) = —1, 0, 1 where it is parabolic.

Note: It will follow from the remarks below that parabolicity occurs at most on a set of
measure 0.

To prove the assertions concerning stability, we regard the eigenvalues A, as being
obtained by the following composition of maps = A.(eh) = f..g-l(eh). Here l(eh) = \¥(ch)
is given by formula (9). The function g is given by g(A?) = iy, (T) = ily; (T(A?), a, A2) with
a = 4\ (1 — (ar/a;)) + 2(ay/a;) + 1 and the functions f, by f. (u) = 2u®> — 1 + (u® (® —
1)V2. We restrict the domain to [0, k] U [k, , @) so that only non-hyperbolic values are
considered.

We now observe that g is analytic in A? for 0 < A? < 1. To see this, note that since sn(u,
A?) is analytic in A? for 0 < A? < I [11, p. 493], the solutions of Eq. (12) are analytic in «
and A? as well as the independent variable for 0 < a, 0 < A2 < 1. Therefore the condition «
= 4N*(1 — (a*/ay)) + 2(a;/a,) + 1 implies that the solution i, of Eq. (7) is analytic in A? for
0 < A* < 1. Now T(A?) is also analytic in A% indeed,

TOY) =7l + 3 a2\ with g, = (2'(‘2;)1.)."' 4',32'1

provided A? < 1. Thus g is analyticin A% for 0 < A? < 1 and, a fortiori, for0 < \2 < } .

Referring now to the Arnold-Moser-Riissman criterion stated in the introduction, let F
denote the complement of H in the unit circle S. In particular, F contains all roots of unity
(and therefore will include the parabolic values of A. ). Since F has measure 0, f. ~(F) has
measure 0 in [—1, 1]. This is easy to check using the monotonicity and differentiability
properties of f.. (see Appendix 2). Now the map g is analytic on its domain and maps into
[—1, 1]. The analyticity can be used (Appendix 2) to show that g=*(f.~!(F)) must have
measure 0. Finally the monotoneity of / and the fact that its derivative is bounded away
from 0 on compact sets can be used to show that the set £ = /.~ (g~'(f~*(F))) has measure
0 in the set D = [0, k] U [k, , «). This finishes the proof of the theorem.

6. The out-of-phase solution. The development here follows that of Secs. 2, 3 and 4,
so we will omit many details. Each component of the out-of-phase solution w, will have
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Hamiltonian
H =1+ Ha, + 2a,)x* + § (b, + 8b,)x".

We again obtain Duffing’s equation ¥ + Ax + Bx* = Owith 4 = a; + 2a, , B = ¢(b, +
8b,), which has the same solution as (2), namely (3), with a, b replaced by 4, B.
The Hessian evaluated along w, is

a, + a; + 3e(b, + 4b,)x* —a, — 12ehyx? 0 0
—ay — 12eb.x? a, t+a; + 3e(by + 4by)x* 0 0
Hyy(wy) = 0 0 1 0
0 0 0 1
We obtain
Zy = —azy — Bzy, Iy = —Pzy — azy

with a = a, + a, + 3e(b, + 4b,)x* B = —a, — 12eb,x®. The system is uncoupled by
introducing

W = zyt 2y, Upj = 21y — Zg5,
and the u,, satisfy the analogues of Eqs. 4 and 5:
tyy = — (a, + 3ebixPuy, ,
tyy = —(ay + 2a, + 3e(by + 8bx* )y, ,

with appropriate initial conditions.
We transform these into proper Lamé equations obtaining in place of (6) and (7) the
following:

., sy @t 2ebx® b, 2] .
Uy + |:4>\ + 1 2 A+ onz b1 + 8b2 3:-2N%sn (u’ A ) Uyj 0’ (14)
" + [4N® + 1 — 320 sn(u, \*)]iy, = O, (15)

Now, as in Sec. 3, we find that AL = §[D — 2 + (D(D — 4))?] where D = Tr Z(7).
Moreover, as was the case in Sec. 3, the formula for Tr Z(7) is simplified by virtue of the
fact that the terms from Eq. (15) drop out. Thus the eigenvalues are governed by the
formula

Tr Z(r) = 4 &, X(T).

Note: It can be shown that for a wide class of Hamiltonian systems the uncoupling via
a linear transformation and the reduction of Z(r) in terms of one Lamé equation (more
generally a Hill’s equation) can always be achieved. Moreover, similar results apply to
systems with more than two degrees of freedom.

At this point we observe that Eq. (14) is a much more difficult Lamé equation than was
Eq. (7) because of the factor b,/(b, + 8b,) in the non-autonomous part. It is easy to show
(and is part of a well-known general result) via the transformation ¢ = am(u, A\?) and an
application of Ince’s theorem [6, p. 93] that no regions of instability for Eq. (14) collapse
unless b, = 0 or b, = 4b, . We can construct stability charts in these two special cases and
we shall do so to illustrate the rather different stability behavior possible for the out-of-
phase mode.




138 G. PECELLI AND E. S. THOMAS

Case 1: b, = 0. In this case (14) has the form (12) so that the same stability chart may
be used. Here, however, the lines determined by (14) are given by

_ 2 a, ) a,
« 4>\<1+a,+2a2 +al+2a2’

and the configuration is that shown in Fig. 3.

We see that when 0 < a,/(a;, + 2a,) < I, w, will be elliptic stable, except on a set of
measure 0, until « = 1 + A%, which translates to eh = (12a.(a; + 2a,) + 8)/9b, , when it
becomes and remains hyperbolic. When a,/(a, + 2a,) = 1, the solution is parabolic for all
eh.

Case 2: b, = 4b, . Here a new stability chart is required since Eq. (14) has the form

't (@ = 2NEsnR(u, NB))y =0 (16)
Wlth a = 4A2 (az/(al + 202) + a,/(al + 2(12).
One has the following solutions of (16):
y = dn(u, \*) when a = \? period T(\?),
y = cn(u, \X*) when @ = 1 period 2T(A?),

y = sn(u, \*) when « = A* + | period 2T(A?).

Since Eq. (16) has exactly two nondegenerate instability regions we obtain the chart in
Fig. 4. Here, for 0 < a,/(a, + 2a,) < 1, w, is elliptic stable for all values of ek outside a set
of measure 0. For a,/(a, + 2a;) = 1, w, is parabolic for all eh.

Further study of the out-of-phase mode, if it were to B based on the techniques of this
paper, would require stability charts for equations of the form (14) with b,/(b, + 8b;) as
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parameter. This seems difficult. We also mention that if one wishes to consider the stability
problem for Hamiltonians with more general nonlinear terms, e.g. high even powers
rather than fourth powers in (1), then one is lead to more general Hill’s equations in place
of (12). Here again not enough is known about the stability charts of the equations to
obtain satisfying results.

Appendix 1. In this appendix we show that the complement of the set H defined in
the introduction in connection with the Arnold-Moser-Riissmann criterion has measure 0
in the unit circle S. Denoting the complement by G, we see that G can be written as the
intersection of sets G(k), k = 1, 2, -, where G(k) = {u € S| for somen, |u* — 1| <
k~'n*}. Since G(1) D G(2) D - - - , it suffices to prove that the measure of G(k) tends to 0
as k — + o, Write G(k) = Un-," G(k, n), where G(k, n) = (u € S| |u" — 1| < k~'n %
Letting r, = k~'n~* and choosing k sufficiently large, we observe that G(k, n) consists of n
disjoint arcs in S centered at the nth roots of unity, each having arc length equal to (4/n)
sin~! (7,/2). Thus the measure of G(k, n) is just 4 sin~* r,/2 and the measure of G(k) is at
most 4 Z,,=l°° sin~'r,/2. Now letting 6, = 4 sin~' r,/2 and choosing k large enough so that
0,./4 < 1, we have

r./2 = sin6,/4 = (0,/4) — (0./4)%q

where 0 < g < 1/3!, so that r,/2 > 56,/24 or 6, < (12/5)r, = 12/5 k~'n*. Hence the
measure of G(k, n) is at most Y ,.," (12/5)k~'n~*. For k > 2, the series converges with
sum less than 12/5(k — 1).

Appendix 2. In this appendix we verify the assertions of Sec. 5 concerning the
preimage of the set F under the composition A, = f..g-/.
Thus, let F have measure zero in the unit circle S and consider, first, one of the maps
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fe,sayfo:[—1,1]1— Sgiven by f,(u) = 2u® — 1 + (u*(@u? — 1))*/% Let I = [—1, 0] so that
{11 is one-to-one. It suffices to show that the measure of f, ~*(F) M I is zero. Let K be the
compact subset of S defined by K = f,([—1 + ¢/4, ¢/4]) and let k > 0 be a lower bound for
|f'(u)| ontheinterval L = [—1+ ¢/8, —¢/8] D K. Let {W,|i= 1,2, - -} be a denumerable
cover of the set F (N K with open sets each of which lies in f(L) and such that the measure
of \UW, is less than ek/2. Then, for each i, f,~Y(W,) = V, = (a,, b,) lies in L and the
measure of W, can be written:

mwy = [ 17 du= b - ak = km(v,).
Now f,~Y(F) C Uf+ % W,) U (I — K), so that
m(f+N(F)) <Y %m(W,) +e/4+ ¢/4 <,

as desired.

Next we consider the map g: (0, 1) — [—1, 1] of Sec. 5. Recall that g is real analytic on
(0, 1) and therefore {A\? | g’ (\%) = 0} is a countable set with no accumulation points in (0,
1). Therefore we may write (0, 1) as the (possibly infinite) union of closed intervals {I, i =1,
2, ++-} such that g’ does not vanish on the interior of I,. The proof of the preceding
paragraph may now be applied to each [, to show that the measure of g~'(f.~%(F)) N 1, is
zero for each i.

Finally, the map /: [0, k,] U [k,, ) — [0, §) given by I(r) = } — (a,/(a,® + 2rb,)"?) is
monotone and the derivative is bounded away from 0 on compact sets. Thus a variation
on the same argument shows that /=!(g~'(f.~'(F))) will have measure zero on [0, k,] U [k,
[ee]

).
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