
QUARTERLY OF APPLIED MATHEMATICS 167
JULY 1978

DYNAMICS OF THE JOSEPHSON JUNCTION*
By

M. LEVI and F. C. HOPPENSTEADT

Courant Institute, New York University

AND

W. L. MIRANKER

IBM T. J. Watson Research Center, Yorktown Heights,

Abstract. We study the sine-Gordon equation and systems of discrete approxima-
tions to it which are respectively a model of the Josephson junction and models of
coupled-point Josephson junctions. We do this in the so-called current-driven case. The
voltage response of these devices is the average of the time derivative of the solution of
these equations and we demonstrate the existence of running periodic solutions for which
the average exists. Static solutions are also studied. These together with the running
solutions explain the multiple-valuedness in the response of a Josephson junction in
several cases. The stability of the various solutions is described in some of the cases.
Numerical results are displayed which give details of structure of solution types in the case
of a single point junction and of the one-dimensional distributed junction.

1. Introduction. The Josephson junction is a cryogenic device consisting of two
super-conductors separated by a thin gap. (A descriptive survey of the Josephson junction
may be found in [5] while a more popular description is found in [3].) There is a jump in
the electron wave function across the junction gap (see Fig. 1.1). The corresponding jump
in the argument of this wave function, denoted by 0(x, t), satisfies the damped sine-
Gordon equation which in appropriate units is (subscripts denote differentiation)

0t( + <j(pt — 4>xx + sin 0 = 0, 0 < x < 1.

Two principal cases of interest arise, depending on how the device is driven. In the so-
called voltage-driven case, a constant voltage is maintained across the gap, and the
resulting current is measured. In the so-called current-driven case, a constant current is
maintained flowing across the gap, and the resulting voltage is measured.

Experiments show that the voltage is a multiple-valued function of the current; this, in
addition to the junction's extremely short response time and low power dissipation, makes
the junction useful for computer circuits.

The voltage-driven case corresponds to the following boundary conditions for <fi\

(Pt\x=0 ~ ^5 0x|x = l — H,

* Received November 23, 1977. The authors thank Dr. F. Odeh for informative discussions concerning the
problem.
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Fig. 1.1 This is a visualization of a Josephson junction. Two superconductors are separated by a thin gap.
The model studied here is based on the jump in the electron wave function across the gap, denoted here by 0.

where V is the applied voltage and H is an applied magnetic field. The resulting current is
determined as a time-average of cpx . The voltage-driven case has been treated elsewhere
(see [4] and [6]).

The boundary conditions for the current-driven case are

4>x |*-o = H, 4>x\x-i = H + /,

where I is the applied current. The voltage across the gap is <p,(x, t). <pt(x, t) is typically
highly oscillatory, and so time-averages (4>,(x, t))1 are actually measured. Such averages
exist for solutions whose time-derivatives are periodic. In this paper we present a study of
such solutions, for which we henceforth use the term running periodic solution.

In Sec. 2, we consider discrete versions of the model which are obtained by making a
discrete spatial approximation to 82/8x2. When n is the number of mesh points used in
this approximation, we refer to the model as the n-coupled point junction model. We give
mechanical interpretations to the n-coupled point junction model and to the sine-Gordon
equation itself.

The single point junction model {n = 1) has as a mechanical analogue a pendulum with
an applied torque. Since we were unable to find a sufficiently detailed analysis of this
model in the literature, we supply one for completeness. One feature of this system of
particular interest here is that both stable static states and running periodic solutions (i.e.,
solutions of the form <j) =a>t + p(t) where p is periodic in t) can coexist for certain
parameter values. This is described in Sec. 3.

In Sec. 4 we give the results of numerical analysis of static solutions, including their
stability. These solutions correspond to static states of the sine-Gordon equation. Next, in
Sec. 5, we prove the existence of running periodic solutions to the sine-Gordon equation
(these are solutions of the form t) = wt + p(x, t) where p is periodic in t) and to the n-
coupled point junctions in Sec. 5.

In the Appendix we give the proofs of assertions made in Sec 3.

1 If the time-average (0,(x, t)) exists, it is in fact independent of x.
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2. Discretization and mechanical interpretation. We consider the boundary-value
problem

<t>tt + a<t>t ~ <Pxx + sin 0 = 0, (2.1)

<t>x\x=o = H, (t>x\x-i = H + I. (2.2)

We also consider a discrete version of this problem: for each n, let h = \/n and replace
0(0'— \/2)h, t) by cj>j(t),j = 1, ••• ,n. We introduce the functions 0oO) and 0n+i(O which
would correspond to 0(—A/2, t) and 0(1 + h/2, t) respectively. Now replace the x-
derivatives in (2.1) and (2.2) by divided differences. Using the discretization of (2.2) to
eliminate 0O and 0n+1 , we obtain the following system of the ordinary differential
equations:

0 + <70 + A<f> — S(<f>) = b. (2.3)
In the case n = 1, 4> = $! , A = 1, S(4>) = sin 0 and b = I. For n > 1,

0 =

01

, 5(0) =

sin 0!

sin 0„

A=±
h2

1 -1
1 2-1

-1 2 -1
-1 1

b=1h

-H
0

0
H + I

Here A is an n X n tridiagonal matrix and 0, b are n-vectors.
This system is of independent interest in the study of Josephson junctions: it corre-

sponds to w-coupled point junctions. The casen = 1 is referred to as the point junction; the
case n = 2 as the double junction. (Some properties of the doublejunction are described in
[1,2].)

The systems (2.1)—(2.2) and (2.3) have simple mechanical interpretations. For (2.3)
consider a system of n pendula whose points of suspension are equally spaced along a
common horizontal axis (see Fig. 2.1). Each pendulum is constrained to move in a plane
perpendicular to this axis. Let 0y be the angle between the rod of they'th pendulum and the

A
[>;

4>.n
Fig. 2.1 Mechanical analogue of M-coupled point junctions, n pendula are suspended from a common

horizontal axis and coupled by an elastic torque. The deviation of each pendulum from equilibrium is denoted by
the angles 0.
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Fig. 2.2 Mechanical analogue of the Josephson junction (see text).

downward-pointing ray. Neighboring pendula are coupled by an elastic torque. In partic-
ular, the torque exerted upon the7th pendulum by the (7 + l)st is (1 /h2)((f)]+l - <j>j). The
y'th pendulum is damped by a torque ofij . An external torque, H/h, is applied to the first
pendulum, while an external torque, (// + I)/h, oppositely directed, is applied to the «th
pendulum.

These angles <pj satisfy-the system (2.3). The point junction corresponds to a single
damped pendulum to which an external torque, /, is applied.

The mechanical interpretation of (2.1 )-(2.2) consists of an elastic string restricted to lie
on the surface of a horizontally placed cylinder of unit length (see Figure 2.2). Each point
of the string is constrained to move in a fixed plane perpendicular to the axis of the
cylinder. The tension of the string is proportional to its elongation. (This is a continuous
analogue of the coupling of the pendula.) x is measured along the axis of the cylinder.
From the point x on the axis draw a ray which is perpendicular to the axis and which
passes through the string. Let <f>(x, t) be an angle between this ray and the downward
pointing ray. The string is subject to a torsional damping, aj>(x, t). Apply a fixed torque H
around the axis of the cylinder at one end of the string and a fixed torque H + I oppositely
directed at the other end. This angle 4>{x, t) satisfies the system (2.1)—(2.2); moreover, this
is so without an approximation based on the requirement that 4> is small as in the case, say,
of the mechanical model of a vibrating string which leads to the wave equation.

3. A single point junction. The single junction corresponds to (2.3) for n = 1. Re-
placing 0 = 0j(r) by x(t), we rewrite (2.3) as the following system:

* = y< y = ~f7y + / — sin (3.1)

The mechanical analogue of this is the damped pendulum with an applied constant torque
I. This is a well-studied problem (cf. [9, pp. 70 ff.], and [10]), and in the case I > 1 a
running periodic solution is known to exist. When I < 1, the (x, ,y)-phase plane of (3.1)
acquires rest points and yet for certain a, as we will show, there exists a nontrivial running
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solution. Indeed, this solution coexists with static solutions, the latter corresponding to the
rest points in the phase plane. This explains the existence of two different values of voltage
for a given current.

In Sec. 3.1 we state our results; proofs follow in the Appendix. In Sec. 3.2 we give the
results of numerical computations.

3.1 Statement of results. We consider three separate cases: A) I > 1, B) I = 1; C) / < 1
for (3.1). The following are statements of the results for each of the cases. The proofs
follow in the Appendix.

Proposition 3.1 (case {A)\ I > 1). For any I > 1 and a > 0, there are no rest points in
the phase plane and there exists exactly one running periodic solution which is, moreover,
globally exponentially stable, i.e. each trajectory in the phase plane tends to it ex-
ponentially as t -» oo.

Since for two solutions (.*!, y:) and (x2, y2) we know that yt — y2 tends to zero
exponentially, it follows that for the x-coordinates we have

Xi(/) - x2(t) = const + 0(exp (~/3t)), as t -> oo;

i.e. up to a constant shift in phase, these coordinates tend to each other as t —♦ 00.
The voltage V = V(<r, I) = (yp(t)) by definition, where yp(t) is the time-derivative of the

running periodic solution xp{t). For future reference we note that the relation between the
period T of yp{t) and V is

V(a, I) = (y„(/)> = / J xp(t)dt/ jT dt=Y>

since, as will be seen, xp(t) increases monotonically by 2t during the time T.
Remark 3.1. For I > 1 and any a > 0, K(<r, /) is a smooth function of its arguments,

monotone decreasing in a and increasing in I (see Fig. 3.1). This fact is demonstrated in
the Appendix.

Proposition 3.2 (case (B); / = 1). If / = 1, there exists a critical a0 > 0 such that:
(i) For 0 < a < a0 there exists an exponentially stable running periodic solution. The

phase portrait of the system is shown in Fig. 3.2(i) with the domains of attraction of
singular points shaded.

(ii) For a > (T0 every solution tends to one of the singular points (see Fig. 3.2(ii)).
(iii) For the (exceptional) case a = a0 the phase plane is split into two regions (see Fig.

3.2(iii)). The boundary between these regions is made up of the trajectories that connect
up two neighboring singular points; the trajectories from the upper region tend to this
boundary, while trajectories from the lower region tend to the singular points.

Proposition 3.3 (case (c); I < 1). For I < 1 the situation is similar to the previous case.
There exists a = a0{I) such that:

i) For 0 < a < u0(I) there exists a unique exponentially stable running periodic
solution.

ii) For a > a0{I) there is no running periodic solution, and every trajectory in the phase
plane tends to one of the rest points.

iii) For a = a0(l) the phase plane is split into two regions: all trajectories in the upper
region tend to the boundary between the two regions. Every trajectory in the lower region
tends to one of the rest points.

The results of Propositions 3.1-3.3 are illustrated in Fig. 3.3. The proofs of the
assertions made here are given in the Appendix.

3.2 Numerical experiments. The results of numerical experiments for the point junction
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cr
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Fig. 3.1 The dependence of V(u, I) on the parameters a and I is described here. The dashed line arising for a
small and / < 1 indicates that the response is multivalued, as is discussed in Proposition 3.3.

(iii) cr0 - a

THE DARKER TRAJECTORIES ARE yh (x)
Fig. 3.2 Phase plane diagram corresponding to proposition 3.2(1 = I). The notation yh(x) is introduced and

used in the proof of Proposition 3.2 (see Appendix).



DYNAMICS OF THE JOSEPHSON JUNCTION 173

I

<r<tro(l) V(I)

(ii)

1 I
Fig. 3.3 I-V diagrams in case (C) (/ < 1) (i) shows that the response is multivalued for some values of the

applied torque (/) if <r < cr0( 1); (ii) gives the dependence of a on /.

are displayed here. In Fig. 3.4 we plot I against V = 2ir/T for various values of a, the
current-voltage curves of the point function. In Fig. 3.5 we plot a = (t0(/). In mechanical
terms, for a given torque /, <j0(I) is the critical value of damping below which a running
periodic solution may be sustained.

4. Static states in current-driven junctions. The static states of the current-driven
junction are determined as solutions 0 = u{x) of the problem

uxx = sin u, ux{0) = H, ux{\) = H + I.

1.0
V/27T

Fig. 3.4. Numerical calculation of the I-V diagrams for various choices of a.
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T

0.5-

cr
Fig. 3.5. Numerical calculation of a = a0(I).

One approach to this problem is to obtain the solution to the differential equation in terms
of elliptic integrals and then determine which among these solutions satisfy the boundary
conditions (see [7]). This approach ultimately leads to a form for solutions that can be
rigorously justified and that can be evaluated numerically.

Rather than this analytic approach, we take a direct numerical approach that provides
a description of static states as well as their stability as solutions to the sine-Gordon
equation.

4.1 Static states. The phase portrait of the static state equation is given in Fig. 4.2. In
this figure, particular values for H and 1 are indicated by the labelled horizontal lines.
Solutions of the boundary-value problem are those that start on the line ux = H for x = 0
and lie on the line ux = H + I for x = 1. The numerical scheme presented here is based on
this fact.

The numerical solution proceeds in the following way. First, we fix a value for H > 0.

Fig. 4.1. Phase plane description of solutions to the static state problem. A solution must start on the line
ux = H and end on the line ux = H + I.
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Then an initial point on the line ux = H is selected; call the ^-coordinate of this point w(0).
Next, the initial-value problem

uxx = sin m, «(0) = w(0), "*(0) = H,

is solved for 0 < x < 1. The terminal value, wx(l), then gives the value of I for which the
computed solution satisfies the right-hand boundary condition:

I=ux(\)-H.

By repeating this procedure for many values of u(0), 0 < w(0) < 2ir, we obtain a relation
between / and w(0) for each choice of H. The results of the calculations are summarized in
the bifurcation diagram in Fig. 4.1. These diagrams show that for each value of H, there is
an interval of I values, 0 < / < for which there are two static states. For / greater
than /max(//), there are no static states (see Fig. 4.2).

/max(//) is plotted in Fig. 4.3. A critical experiment performed by Rowell [8] that
clinched the identification of the observed resistanceless current in the junction as the d.c.-
Josephson effect gave /max as a function of H. These preliminary calculations presented
here agree with Rowell's observations.

4.2 Stability of the static states. The stability of each static state can be determined
from the linearization of the sine-Gordon equation. Let H and I be fixed (0 < / <

H = 0.0

STABLE
UNSTABLE

_L
0.5 1.0

I
Fig. 4.2. This diagram describes the static states and their stability. Branches labelled S are stable, those

labelled U are unstable. For example, for I = .5 and H = 2.83, there are two static states, one beginning near the
point (7r/4, H), the other near (27t - 7r/4 H). The former one is stable, the latter one is unstable. This figure
shows the dependence of /max(//), the maximum current for which a static state is found, on H the applied

magnetic field.
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/„,„(//)), and let u*(x) be a corresponding static state. The linearization of the problem
about this state is

<j>tt + ~ <i>xx = cos (w*(x))(/>, 0,(0, t) = 0, 0,(1, t) = 0.

Setting 0 = exp (/?r)V(;c), we have the problem

V„ + cos (u*(x))V = XV, Vx(0) = Vx(l) = 0,

for V, where A = p2 + pa. The largest eigenvalue of this problem is easily determined
numerically by using the Rayleigh quotient.

Since p = — (cr/2) ± ((rr2/4) + A)1/2, if A > 0, then Re p > 0, but if A < 0, then Re/> < 0.
In Fig. 4.2, the branches labelled s (stable) are those for which we found A < 0; those
labelled u (unstable) are those for which we found A > 0.

5. Discrete (« ^ 2) and continuous junctions. As we mentioned in the introduction,
the existence of a stationary voltage is assured by the existence of a running periodic
solution. In this section we prove the existence of such a solution for both the discrete (n >
2) and continuous cases. However we deal here only with / > 1 since the case / < 1 is open.

We formulate our results in the following
Theorem 5.1. If / > 1, then the systems

(j) + G<j> + A(f) + sin 0 = b, (5.1a)

0k + c0r ~ <t>xx + sin cj) = 0, (5 1b)

0,(0, t) = H, 0,(1, /) = //+/,
each have at least one running periodic solution.

Remark 5.1. F. Odeh shows the stability of running periodic solutions of (5.1b) in the
voltage-driven case (see [6]). His argument carries over to the current-driven case, al-
though the proof presented here takes a different point of view. The remainder of this
section is devoted to the proof of this proposition.

Proof of Theorem 5.1. Part a). First we consider n = 2, the double junction, and then
n > 2.
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n = 2. The system under consideration is

01 + <70! + K01 ~~ 02) + sin 0! = — 2H,

02 + c02 + H02 — 0i) + sin 02 = 2(// + /). (5-2)

We rewrite (5.2) in terms of x = <p2 — <t>i, y = K02 + 0i) 0> being a center of mass
coordinate):

a) x + ax + fa + sin 02 - sin 0! = 2(27/ + /),

b) y + ay + £(sin 0i + sin 02) = /. (5-3)

(A system of this form for the double Josephson junction appears in [ 1] and [2].) (5.3) is in
turn written as the following first-order system:

a) x — u,

b) u — -au — \x + sin 0i - sin 02 + 2(2// + I), ^ „

c) y = v,

d) v = — av — |(sin 0i + sin 02) + /.

(5.3b) can be rewritten as

— (exp (at)y) = (/ - |(sin 0, + sin 02)) exp (cr) = c(0 exp {at) > c0 exp (at),

for some c0 > 0 (since / > 1).
If y0 = j(0) > 0, then for t > 0

exp (at)y{t) = y0 + [ exp (<rt)c(t)dt > c0(exp (at) - 1),
^ 0

i.e.

y(t) > c0(l - exp (-at)), t > 0. (5.5)

That is, y(t) is monotone increasing for t > 0 if / > 1 and j>(0) > 0.
Consider a solution of the system (5.4) which starts at a point (x0, 0, u0, v0) on the half-

hyperplane {y = 0, v > 0} at t = 0 (see Fig. 5.1). According to (5.5), this solution will
intersect the half-hyperplane in R\ {y = 2nr/, v > 0} (/ an integer to be chosen later)
transversally, i.e. there exists T = T(x0, u0 , v0) such that

y(T, x0 , Mo , v0) = 2irl,

y(T, x0, u<, , u0) > 0.
(5.6)

By the implicit function theorem and the theorem on dependence of a solution on
initial data, (5.6) implies that

T = T(x0 ,Uo,Vo)

is a continuous (even smooth) function. Thus we have a continuous map

M:(x0, Mo , v0) - (x(T), u(T), v(T))

with T = T(x0, Mo , v0) defined by (5.6) from R+3 = {(x, u, v); v > 0} into itself. Take a
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THE MAP M

'" (*0,U0 ,vo^

{(xAJ.y,v)y=o,v>o} Z_{(x,u,y,v):y=27r/)v>o}
Fig. 5.1. The map M. This is used in the proof of Theorem 5.1.

parallelepiped in R+3 (see Figure 5.1) defined by

P = {(jc, u, v), v > 0, max (| x\, | u\, v) < c\,

with an appropriate choice of c (depending on <r) to be made later. We will show that

MP C P. (5.7)
This would prove the existence of a fixed point of the map M (by the Bohl-Brouwer
theorem), and hence the existence of a running periodic solution for Eq. (5.3) and hence
for (5.2).

Indeed, if for some P = (x0 , w0 , v0), M(P) = P, i.e.

x(T\ x0 , 0, w0 , v0) = x0, y(T; x0, 0 , u0 , v0) = 2-kI ,

u(T\ x0 , 0 , M0 , v0) = Uo , v(T\ x0 , 0, w0 , Co) = v0 ,

then from the definition of x and y,

= </>i(0) + 2ttI, 02(r) = <p2{0) + 2ttI,

MT) = 0,(0), UT) = 0,(0).
This shows the existence of a running periodic solution. It remains therefore, to demon-
strate (5.7). First choose c so that (see (5.4d)) —ac + 1 + / < 0, i.e. take any

-s /+ 1 -
C >   = C0 .

a

(Occasionally different constants whose exact value is not important will be denoted by the
same symbol.) This guarantees that no matter what x, y and v are, v < 0 on the boundary
of P (with the indicated choice of c), so that the u-projection of Pgoes into itself. To cause
the same to be true for the (x, «)-projection, we have to choose a constant c so large that
the damping effect brings |x|, | u\ < c into itself.

Any solution of (5.3a) can be written by the variation of constants formula in the
(implicit) form

1 r'
x{t) = C\ exp (AiO + c2 exp (A2t) +   — exp (X2(f - t)f(r)dT

A2 Ai^ 0

+ T^T-f ' exp {Ut - T)f(r)dT, (5.8)
Ai A2j 0
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where /(?) = 2(2H + I) + sin 0j - sin 02 , and

*u--S±(£- Vl)"'
are the characteristic roots. (We assume that Xj / X2 , i.e. a2 ^ 2; this exceptional case can
be treated analogously and is omitted.) (5.8) also gives

A f 1
u{t) = x(t) = CiXi exp (Xi/) + c2X2 exp (X2?) + -—~ / exp (X2(r - T)f(r)dT

A2 Ai J 0

+ f ' exP - 0)/(T)rfr. (5.9)
Ai A2 J 0

Because of the bound on /(r) and since ReXj < 0, z = 1, 2 (cr > 0), it is easy to see that
the last two terms in both (5.8) and (5.9) are bounded for all t > 0, whereas the first two
terms in both expressions tend to zero as t increases. Choose a constant A > 0 and larger
than any of the last two terms in (5.8) and (5.9), and increase c, if necessary, so that c >
3 A.

We claim that there exists r = t(c) such that for all t > r, |x(f)| < c, |m(?)I < c, if
initially |x(0)| < c, |«(0)| < c.

If / in (5.6) is chosen large enough, then

T(z) = T(x0 ,u0,v0)> t(c)

for all zeR+3. (This last assertion follows directly from (5.5).) Then the (as-yet unproved)
claim and the last inequality assures us that MP C P-

To show the existence of the required r, take |x(0)| < c, |«(0)| < c.
Then (5.8), (5.9) imply that

| Ci + c21 < C, | c^! + c2X21 < C.

Then

M ^ C(|X2| + 1) , . C(|XJ + 1)1 11 IX2 - Xj| ' |C2' - |X2 — Xj| '

Thus C\ , c2 are bounded independently of the choice of x(0) and u(0) (within the permitted
range). Thus, since Re X, < 0, i = 1, 2,

I Ci exp (XjO + c2 exp (X2r)| < A,

I^Xz exp (Xt?) + c2X2 exp (X2?)| < A,

for 1 > r(C) properly chosen.
Finally, (5.8) and (5.9) together with previous remarks imply

|jc(/)| <A+A+A<c, |«(0l <A+A+A<c,

which completes the case n = 2 of part a) of Theorem 5.1.
The case n > 2 of part a) to which we now turn is similar. Introduce a new variable

(center of mass)

| = — (0i + • • • + 0n);
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the equation for £ is

£ + <r£ = - 2 sin (j>k + / (nh = 1). (5.10)

Take the deviation of cp from £ as another variable:

*a = 0a-£; (5.11)
the equation for = (i/^ , • • • , \p2)T is

$ + <4 + A# = Nty + e£) (5.12)
where

e = • , + e£) = yV(</>) = —e( I — 2 sin </> J — sin 0 + 6.j \ « /

All we need to know about JV is its boundedness and the fact that 2^ = 0; note also, that
2^* = 0 by definition. Thus it is natural to restrict (5.12) to the hyperplane 2\pk = 2i^ =0.
The system (5.10), (5.12) with this restriction is equivalent to (2.3). Exactly as in the case
of a double junction, we see that (5.10) implies £(?) > 0 if / > 1 and |(0) > 0. Write the
system (5.10), (5.12) in the form

I = V, V = ~<r£ + / - 2 sin (£ +

i = X> X = ~<rx ~ A\p + N(\p + e£). ^5'13^
Take the set

So = {(£, v, i, x) t IR2n+2:£ = 0, r, > 0, £ = Z x* = 0}

homeomorphic to IR+2nl (2«-l-dimensional Euclidean halfspace) and let the solution of
(5.13) start on S0 at t = 0.

Since £(/) = r/(t) > 0 (t > 0), the trajectories of (5.13) will intersect any hyperplane £ =
2-irl (/ > 0) transversally, so that we have a continuous map of S„ into

SM = {(£, V, f, X) f IR2^2: £ = 2W, r,Z 0, 2 ^ = Z X. = OK
We choose an integer /, and we identify S0 and S2nl with IR+2n+1 in an obvious manner.

Then, if M has a fixed point, (5.1a) has a running periodic solution, as is easily
checked. To prove the existence of a fixed point, we will show that there exists a natural
number / and a constant R, suitably large, so that the subset of S0 homeomorphic to a ball,
namely

{(??, \p, x): 0 < ?7 < R, |<A|, |x| ^ R),
maps into itself under M. In other words, it is enough to show that if the solution starts at

|(0) = 0, 0 < ?j(0) < R, |^(0)| < R, | x(0)| < R,
then for £(7) = 2tr/ (T = T(v(0), ^(0), jt(0))) we have

0 < r,(T) < R, \t(T)\<R, \X(T)\ < R.
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For the first two equations in (5.13) the proof proceeds exactly as in the double-junction
case.

We simplify the last two equations of (5.13), i.e. (5.12), by setting \p = Px, where P
diagonalizes A:

P-'AP = D.

We get

x + ax + Dx = M, M = P XN.

This decouples the linear part of (5.12):

xk + axk + nkx = Mk, (5.14)

where \Mk\ < a, a some constant.
The are the eigenvalues of A\ one of them, corresponding to the eigenvector

v, =

is zero; say ixi = 0. The rest of the fxk are nonzero, which follows by noting that A has only
one eigenvector with zero eigenvalue (as is easy to check) and that for symmetric matrices
the multiplicity of an eigenvalue coincides with the dimension of its eigenspace. Moreover,
Hk > 0 for k > 2, using a theorem of Gershgorin.

In terms of our new variable x it suffices to show that if R is sufficiently large, there
exists a r such that if

|x(0)| < |x(0)| < (5.15a)

then

l*(0l ^ "jyp 1*01 ̂  -j^j- for t > T. (5.15b)

This would imply that the indicated subset of S0 is mapped into itself and thus complete
the proof: indeed,

[*(0)| <R^ |*(0)| < \*(T)\ <R-

The same is true for x = ■j/. Here T = T(z) > r is assured if we choose I large enough.
Write xk from (5.14) as

1 r1
xk(t) = ckl exp (Xfe1/) + ck2 exp (A*2f) + — — / exp (Xk\t - r))Mk dr

Ah Ab J nX/e1 " K2

+ . 2 s 1 f exp (A*2(/ - r)Mk dr,
\k Ak J o

xk{t) = Cfc'A*1 exp (Akxt) + • • • .

X,2 - A,

The A„1,2 are the roots of

A2 + crA + fik = 0.
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For k > 2, Re X,1'2 < 0.

To observe the validity of (5.15), we note that the relation = 0 becomes
the following relation for x:

o = T, = 2 Z p*j xj= Z (cxi + T, p"i I xj) = cnx> + •
k k j k J > 2

Here we used the fact that the first column of P is

(/0)

an eigenvector corresponding to Hi = 0.
Thus Xi is a linear combination of xk , k > 2, and an argument similar to the one in

the double-junction case (namely the use of the decay of exponential terms and the
boundedness of the integrals) shows (5.15).

This completes the case n > 2 and the proof of part a) of Theorem 5.1.
Part b). We turn now to the proof for the system (5.16). We omit details similar to the

discrete case in part a). We begin by integrating the partial differential equation in (5.16)
with respect to x; then, using the boundary conditions in (5.16), we get

Stt

where

+ ast = / -/ sin 4> dx, (5.16)
J 0

s(t) = f <j)(x,t)dx.
J 0

Set

A(x, t) = <t>(x, t) - s(t);

A obeys the following equation and boundary condition:

Att + <rAt — Axx + sin (A + s) — f sin (A + s)dx + / = 0, (5.17)
^ 0

A*= H, H + I. (BC1)
As in part a), to show the existence of a running periodic solution of (5.16) it suffices to
prove the existence of T > 0, 5(0), i(0), A(x, 0) A(x, 0) such that

s(T) = j(0) + 2tvl, s(T) = i(0), A(x, T) = A(x, 0), A(x, T) = A(x, 0).
Again we introduce a map M. Here

M:

from

" i(0) "

A(x, 0)
A(x, 0)

" HT) '
A(x, T)
A(*. T)

(5.18)

5 = 0, s > 0,

A0, A0 G C2(0, 1), with A0 subject to (BC1)
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into the set of the same form except that s = 2irl. Here T is determined by

s{s0, A0, A0 , T) = 2-irl, (5.19)

where the integer / is to be chosen later.
Since I > 1, (5.16) shows that s(T) > 0 for any T and any initial data lying in our class

(s(0) > 0). Thus (5.19) determines T as a continuous functional of (j0, A0, A0). Here we
use the fact that 5 is a continuous functional of its arguments which follows from the
continuous dependence of the solution of (5.1b) on its initial data in the C(0, l)-norm.

Thus the map M is well-defined and continuous. It remains to show that M has a fixed
point. To do that, we restrict the set of initial data to a compact convex subset K of IR+ X
C(2) X C(2), and show that this set is mapped by M into itself; by Schauder's lemma M will
have a fixed point. We indicate a choice of the set K and sketch the proof of the fact that M
maps K into itself.

Let

Bc = {A, A £ C(2)(0, 1) | A satisfies (BC1). | A |, | Ax|, | Axx \ < c; Axx and Axx are Lipshitz
functions each with Lipshitz constant c. Ax(0) = Ax(l) = 0, |A|, |AX|, |AXX| < c.}

Bc is a convex set and compact in C(0, 1). As in part a), the inequality 0 < s < c is
preserved in time if c is chosen large enough. Thus we set K = [0, c] X Bc . We now verify
that MK C K for c sufficiently large.

Rewrite Eq. (5.17) so as to obtain homogeneous boundary conditions for A. Take

p(x) = m + I)x2 - lH(x - l)2,

and set

v = A - p(x).

Now d satisfies

vx U=0,1 = 0

(BC2)
Vx 11-0,1 — Of

and

vtt + <rvt — vxx + sin (v + p + s) - [ sin (u + p + j) dx + / = 0, (5.17)'
^ 0

or, as a system

v = w,

w = -aw + vxx + f(v, s). (5.17)"

Set

( h>) = M' ( 8^ —i /) =J^ ^ denotes ^-differentiation), ^ = F,

and obtain (4.1b) in the form

u = Au + F, (5.20)

where u satisfies the homogeneous boundary conditions (BC2). (5.20) has a general
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solution of the form

u(x, t) = exp (At)u(x, 0) + f exp (A(t - t))F(u(x, t))cIt. (5.21)
^ 0

Let Bc° be Bc with BC1 replaced by the homogeneous boundary conditions, (BC2).
To prove that MK C K it suffices to show that if «(jc, 0) £ Bc°, then u(x, x) £ Bc/2°

where c can be chosen arbitrarily large and where r depends only on c, but not on the
initial data. We will use the following information about A restricted to Bc° (without
proof): if u £ Bc° and t > r = r(c), then

11 exp (At)8xJu|| < L exp (-at) \ \ 8xJu \ \ ,j = 0, 1, 2, where 11 • 11
is the C([0, l])-norm and exp (At)dx2u is a Lipshitz function with a

Lipshitz constant L exp {—at) a > 0, a and L depend only on c. (5.22)

It remains only to observe that (5.22) applied to (5.21) readily imply that

u(x, 0) £ Bc° => u(x, T) £ B, 0
C/2

if c is chosen large enough, T depends only on c. This concludes the proof of part b) and of
Theorem 5.1.

Appendix. Proofs of the assertions of Sec. 3.1.
Proof of Proposition 3.1. For / > 1 the absence of singular points is obvious. The

existence of a running periodic solution is obtained from the following geometric con-
struction (consult Fig. A.l).

For >2(1+ I)/a we havey < c2 < 0, and for y < (/— l)/2<x > 0 we havej > c2 > 0.
Here Cj and c2 are appropriate constants. Moreover, in the strip

l^±<y<2l±i, i^>0. (A..)

- X
7r
2

Fig. A.l. Solutions of system (3.1) map the segment AB into the segment A'B'.
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Thus each trajectory starting on the segment AB will reach A'B' (see Fig. A.l) in finite
time (< 2ir(/ - l)/2<r)_1). Moreover, the trajectories intersect AB and A'B' transversally.
Thus we have a continuous, smooth map M.AB —> A'B', taking each point from AB along
the phase flow into A'B'.

Thus, M has a fixed point. This proves the existence of a running periodic solution.
To prove the exponential stability and uniqueness of running periodic solution we

begin by noting that since x = y > 0 in the strip AA'B'B, and since the trajectories, once in
the strip, never approach the x-axis, we may write (A.l) as

dy , I - sin x , „-j- = -a +  (A.2)ax y

It suffices to show that if y(x, y0) is a solution of (A.2) with ^(0, j0) £ AB, then

My0 = yU, y0)

has a positive derivative which is less than 1: i.e. for some constants a and 0, we have

0 < a < yyo'(2ir + tt/2, y0) < 1 - p, 0 < (3 < 1.

(The positivity ofyyo' follows from consideration of M~l and its boundedness on M(AB).)
Write (A.2) as dy/dx = f(x, y). With y = y(x, y0), we differentiate this equation with
respect to y0:

j^yy: =fy'-yyj- (A.3)

Note that there exists a positive constant c so that fy' = —(/ — sin x)/>>2 < — c < 0 in the
strip, since y is bounded therein. Thus, by using yyo'(ir/2) = 1, (A.3) yields

yy,„'(*) = Jy„'( y) exp( /o fy' dx) - exP (~cx)-

Finally,

M'(y0) = ^0'( 2tt + y) < exp (-2vc) < 1.

Thus every solution starting on A B tends exponentially to the running periodic solution in
the sense that for any two solutions (x! , ^i) and (x2, _f2) starting on AB,

JiC*) ~ y*(x) = 0(exp (-ex)).

Moreover, any solution starting outside the strip (i.e. for^ < (I — 1 )/a or y < 2 (/ + 1 )/<j)
eventually runs into the strip. This completes the proof of Proposition 3.2.

Proof of Remark 3.1. The smooth dependence of V on a and I is clear from the fact that

1) the map M = Ma< ,(j) depends smoothly on a, /.

2) j-yMa,,(y)<\.

1) and 2) imply that the fixed point of Ma,, (through which the running periodic solution
passes) depends on a, I smoothly.
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Fig. A.2.
It remains to prove the monotonicity statements. We note that increasing a or

decreasing / (while still keeping / > 1) both have the same effect of decreasing Ma< /(j).
Omitting the simple details, we illustrate this statement in Fig. A.2. M2 corresponds to a
larger a or 'a smaller I. Let <jx < <r2, A < /2, and suppose that at least one of these
inequalities is strict. Two trajectories corresponding respectively to the fields

x = y

y = — aty + I, - sin i = 1,2, tt/2 < x < 5ir/2,

both starting at (tt/2, y) (in the upper half-plane), satisfy

y2(x)<yl(x), ~<x<^Y~

This follows directly from the fact that the vector field for i = l has a larger vertical
component:

— <7iy + h — sin x > — a2y + I2 — sin x. (A.4)

yp(ir/2)
Fig. A.3.
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Thus Mx(y) > M2(y), which in turn implies the same relation between the fixed points of
M-i and M2\ Fig. A.3 illustrates this point. In other words, the running periodic solutions
yP\x), yp\x) satisfy

V(*) > yP\x) (A.5)
for x = 7t/2. This and (A.4) imply the validity of (A.5) for all x.
Finally, since

dx
yP(x)'

/ 57T/2 fdt(x) = /
tt/2 J

we see that

^ ■'■> = T, - 2'/ / $T) > 2*//
This completes the proof of Remark 3.1.

Proof of Proposition 3.2. To begin we list the main steps 1) - 4) of the argument.
Step 1) We restrict our attention to x e [x/2, (tt/2) + 2ir], y > 0, and note that the

vector field

x = y, y = —ay + 1 - sin x

is 27r-periodic in x.
We demonstrate the existence of a solution, which we denote either by (xn(t), yh{t)) or

by yh{x) (whichever is more convenient), such that for t -» °° {xh , yh) -> (x/2 + 2ir, 0) at
an angle ir-tan-1 a (see Fig. A.4). In other words, yh'{5ir/2 - 0) = - a. Moreover, any
trajectory passing above this solution leaves the strip tt/2 < x < 5x/2, y > 0 for some t
through the right "wall". (In the upper half plane the horizontal component of the field is
positive and on the horizontal axis the field is pointed up.) In other words, if y(x) > yh(x)
for some x/2 < x < 5ir/2, then j>(7t/2 + 2ir) > 0. Thus yh{x) is the highest solution that
tends to 0 as x -»(5x/2) — 0.

Step 2) Depending on whether ^(x) emanates from (see Figs. 3.2, A.6, A. 10 and
A.15)

a) the bottom of the strip, i.e. from (x, 0) with x « (x/2, 5x/2), specifically for some t
= t0 , x(t0) t (x/2, 5x/2), y(t0) = 0;

Fig. A.4.
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b) the left wall of the strip: (x/2, y), y > 0, i.e. yh(j/2) > 0;
c) the left corner: (7t/2, 0), i.e. yh(ir/2) = 0,

there are three corresponding cases (see Fig. 3.2):
i) There is one running periodic solution which is, moreover, exponentially stable;
ii) There is no running periodic solution; all trajectories tend to one of the singular

points;
iii) There is no running periodic solution, the phase plane is split by yh(x) (2w-

periodically continued in x) into two regions as in Fig. 3.2 (iii).
Step 3) There exist values of a such that the alternatives a), b) of Step 2 hold:
For a) to hold, a must be sufficiently small (we give a rough estimate),
For b) to hold, a has to be large enough (a > 2 turns out to be sufficient).
Step 4) The values of a described by a) and b), Step 2 cover the whole set of real

positive numbers except one separating point a = a0 , which corresponds to the alternative
c) (Step 2).

We now begin the proofs.
Step I. To investigate the flow

* ~ y = — ay + l — sin x

near the rest point

i -iX = - + 2-7T

y = 0 (the same, of course, for ^ + 2-n-fi),

we introduce z = x — 5x/2 to obtain

z = y> y = — ay + 1 — cos z. (A.6)

Now the rest points are z = 0(1 + 2irn), y = 0; we consider n = 0 without loss of
generality. Introduce the polar coordinates z = r cos <fi, y = r sin 0, and write 1 - cos z =
(z2/2)(l + 0(z2)). (3.6) becomes

<i> = — sin 0 cos 0 (cr + tan 0) + i r cos2 0(1 + 0(^ cos2 0))

r = r sin 0 cos 0(1 — a tan 0 + \ r cos 0(1+ O(r cos 0)). (A.6)'

(A.6)' has the rest point 0 = 0O = tv — tan 'tr, r = 0. Linearizing this system near that
point, we obtain

0 = Cj0 + c2 r, r = — c3 r,

where the cx , c2 , c3 are positive constants. The matrix of the linear system has two real
eigenvalues of opposite sign: Xj = Ci , \2 = — c3 . Thus r = 0 = 0 is a hyperbolic singular
point.

The flow of the nonlinear system (A.6)' has the same qualitative behavior near the
point r = 0, 0 = 0o = 7r - tan-1 a. In particular, there is a stable manifold S, tending (as t
—> oo) to 0 = 0o, r = 0. All the trajectories to the left (right) of S near S, in the strip 0 < r
< r0, r0 small enough, deflect to the left (right) (see Fig. A.5). Moreover, any trajectory
starting to the left of S with $ < <j> < < r < r0 crosses the line 0 = x/2 after some finite
time. Indeed, from the second equation in (A.6)' it follows that r < 0 in the strip 0 < r < r0
(r0 not too large). Therefore any trajectory starting inside the (curvilinear) rectangle
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Fig. A.5.

A BCD in Fig. A.5 either leaves through AD (which we want to prove) or tends to DC. The
last, however, is impossible since, first, such a trajectory does not approach C too closely
(C is a hyperbolic point), and second, if it enters a small neighborhood of DC in the thin
rectangle DKLM with small altitude DM (away from C), its speed <£ < — <p < 0, as is easily
seen from the'first equation in (A.6')', so it cannot stay there indefinitely.

Translating these observations to the (x, >»)-plane, we obtain the assertion of Step 1: the
trajectory corresponding to S is yh(x); yh(x) —» 0 as x -> 5ir/2,

,(5ir ^ y\ 2 ) yh(x) r sin 0K br = lim    <  = hm V = hm TT7TT = ~a-
\ ^ ' x-*Sir~/2   x-*5ir-/2   37T <£-»ir-tan xa • Sin (pX~T x 2

Moreover, in a neighborhood of the point (5tt/2, 0), yn(x) is the highest trajectory tending
to that point. But then the same is obviously true for (not only a small neighborhood, but)
all y > 0 and x « [tt/2, 5x/2].

Step 2. al Assume that yh{x) crosses the interval

ir/2 < x < 57t/2, y = 0

(see Fig. A.6), and show that there exists an exponentially stable running periodic
solution. To do this, and for further use, we will need the following auxiliary proposition.

Proposition 3.4. There is a unique trajectory (ye(t), xe{t)) (ory^x)) of the vector field
(3.1), / = 1, in the strip, x c [tt/2, 5x/2], y > 0, emanating from (ir/2, 0):

lim ye(t) = 0, lim xe(t) = ^ + 0.
t-*-CO £-»-oo L

Proof: Consider the segment AB (see Fig. A.7) chosen to be transversal to the flow;
transversality is assured if we choose AB to be free of rest points and such that the slope of
AB is less than -a. To see this, take CB < 2tt and let the slope of AB = - j-(< -a).
Transversality of AB to the flow means that the normal to AB is not perpendicular to the
flow, i.e. (j, l)-(j>, - ay + l - sin x) 4 0 but that

(5 - a)y + l - sin x > 0

holds for (x, y) lying on AB. Moreover, with our choice of B {CB < 2w), the only singular
point in ABC is C.
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Fig. A.6.

Now consider the two sets of points on AB whose trajectories emanate from the sides
AC and CB respectively. These sets are both nonempty, nonintersecting, and open (in
AB). Hence, the complement (in AB) of the union of these two sets is nonempty. It
consists of the trajectories emanating from C.

It is easy to see, moreover, that there is only one such trajectory. Indeed, the existence
of two such would allow us to construct a curvilinear triangle A as shown in Fig. A.8. With
increasing time, this triangle will stretch into a larger triangle A' contradicting the fact that
the divergence of the flow is negative (—er).

This completes the proof of the auxilliary Proposition 3.4. We return to the proof of a)
of Step 2.

The trajectory ye(x) emanating from x = ir/2, y = 0 will pass above the trajectory
yh(x), and thus by the maximality property of yh(x), ye(5x/2) > 0. Thus the mapping M,
which takes y = y{ir/2) into y(5ir/2), takes y > 0 into itself.

!+2tt
Fig. A.7.
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Fig. A

Similar to the case I > 1, we have

M'(y) = exp
f*5',

7T /

sin x ,ax < exp (—c) < 1,

for some positive constant c; this implies the existence of a unique fixed point of M (see
Fig. A.9). Thus, the existence of a running periodic solution, and its exponential stability
is established. This completes case a).

b) Assume >^(0) > 0; show that there is no running periodic solution. As before, we
construct the map

yn !)■ [0,

(see Fig. A. 10). Again, M'(y) < 1, and therefore M has no fixed points (see Figure A. 11).
Since M' is strictly less than unity, there exists a constant c such that 0 < M' < c < l,y

> 0. Since also M(yh(ir/2)) = 0, then for any fixed y > 0, there exists an n such that the n-
fold iterate of M, M o ■ • • o M(y) = 0 for n = n(y) large enough. Thus, any trajectory in

Fig. A.9.
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Fig. A.10.

the upper half-plane tends to some rest point. For the lower half-plane this fact is obvious.
This completes case b).

c) When yh(x/2) = 0 the plane is split into two parts by yh(;c) (continued 2tv-
periodically in x). Clearly, all trajectories originating in the lower part tend to some rest
point (see Fig. 3.2 (iii)).

Consider the map M\[0, c°) _> [0, oo) defined as before. As before, 0 < M'(y) < c < 1,
and M(0) = 0. This implies the existence of only one fixed point of A/, namely y = 0 (see
Fig. A.12). Since (x/2, 0) is a rest point this fixed point does not correspond to a running
periodic solution. Moreover the «-fold iterate of M, M ° • • • o M y => 0 as n —> cot which
shows that any trajectory from the upper part of the plane tends to the boundary between
the two parts, never reaching a singularity in finite time. This completes case c) and with it
Step 2.

Step 3. 1) We show that for ct small enough yn{x0) = 0, tt/2 < x0 < 5ir/2, which by Step
2, a) implies the existence of a running periodic solution.

Proof: ^(jc0) = 0 is equivalent to ye(5tt/2) > 0 (see Fig. A. 13). We omit the simple

M

Fig. A.11.
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Fig. A.12.

argument based on maximality property of yh and the uniqueness of ye(x), so that we
prove only the latter inequality. To that end define the energy of the pendulum:

E(x) = 4r + [ sin x dx = x2/2 — cos x. (A.7)
^ Jir/2

Note that

dE/dt = (x + sin x)x = (1 - <rx)x = (dE/dx)(dx/dt),

which shows that

dE/dt = 1 — ox. (A.8)

For ye(x) we have E0 = E(ye(ir/2)) = 0 and E^ = E(ye(5iv/2)) = ye2(5-rr/2)2, and it is
enough to show that El> 0 (see Fig. A.13). (ye cannot be less than zero for -k/2 < x < 5ir/
2, since the vector field points upward on y = 0.) From (A.8),

/57T/2 /»57T/2(1 — <TXe) dx = 2tt — a yedx.
72 J ir/2

Fig. A.13.
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Thus the condition >><,(5^/2) > 0 sufficient for the existence of a running periodic solution
may be expressed as

/*57T/2

° / ye(x) dx < 2tt. (A.9)
^7T/2

/•57T/2

7T/2

To find a for which (A.9) is true we compare our system with the frictionless pendulum:

x = y, y = 1 — sin x. (A. 10)

The unique solution emanating from (x/2, 0) persists for a = 0, and we call it ye°(x).
We will show that

>"e0(-x) > ye(x), 7t/2 < x < 5ir/2,

but first we will use this fact to obtain a sufficient condition implying (A.9).
We note that for (A.9) to hold it is enough to take

2tt
a <

/ ye°(x)dx~

ye°(x) can easily be found from the conservation of energy of (A. 10):

ye/2 - cos x = x + c.

We find that c = —k/2 by letting x = 7r/2 and recalling that ye(iv/2) = 0. Thus ye°(x) =
(2(cos x + x - 7t/2))1/2. Then (A.9) may be replaced by the following sufficient condition
for the existence of a running periodic solution:

ff<2*/C (2(c°s*+*-f )Tdx
Now we return to show that ye°{e) > ye(x) for x/2 < x < 5tt/2. We note that in the upper
half-plane

1 - sin x > -ay + 1 - sin x, (A. 11)

i.e. the auxiliary vector field has larger vertical components. Assume (the contrary), that
for some ,x0 e (7r/2, 5tt/2), ye° < ye . Then the same must hold for all x t (0, x0) by virtue of
(A. 11): if the equality holds for some £ < x0, then ye° > ye for x > £ (and x < 5ir/2).

Now consider the trajectory y(x) of the flow with a > 0 passing through this point. We
restrict our attention to 0 < x (see Fig. A. 14). On the one hand, this trajectory has to
cross the x-axis in the interval x/2 < x < x0 since y(x) < ye(x), and ye(x) is the unique
trajectory emanating from (x/2, 0). On the other hand, it cannot cross ye°(x) > 0 for x <
x0, by the same argument as before, and ye(x) > ye°(x) > 0 for x/2 < x < x0 . The
contradiction proves the assertion.

Step 3. 2) We show that for a large enough yh{-K/l) > 0, so that there is no running
periodic solution according to b), Step 2.

We show that for a large enough, yh(x0) > 2/a for some tv/2 < x0 < 5ir/2\ this implies
our assertion since yh{x) has to satisfy >'»(*) > 2/a > 0 for -k/2 < x < x0 . Indeed, if for
some x « [7r/2, x0], yn(x) < 2/<r, then >'/,(x0) < 2/<t since the vector field in y = 2/ct has a
negative vertical component:

y = —ay + 1 — sin x < — 2 + 1 — sin x < 0.
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Fig. A.M.

To prove the existence of such x0 , we consider an auxiliary (linear) field together with our
system:

i = y

y = —ay + (1 — cos z) [z = x —

k = *1, V = -OT) - £, (A.13)

for y > 0, and

for 77 > 0.

The auxiliary system is majorized by (A. 12) for -1 < z < 0:

1 - cos z < z2/2 < -z.

It suffices to show that (A. 13) has a solution 77^) such that
a) r/ —> 0+ for f - 0", b) ij(f) -1 < { < 0, c) ij(-l) > 2/a.
a) This follows immediately from the fact that

*«--(§* (*-')")«> <•> 2)

are the eigenvalues of the matrix of (A. 13), so that jj = X£ (X = or X2) is a suitable
trajectory.

b) Take tj(£) = X2|. Since Xj = -((<r/2) + ((a2/4) - 1)1/2) > —a, the (straight line)
trajectory y = XiZ of (A. 13) is below yn(z), for small z. This follows from the fact that_y„(z)
approaches z = y = 0 at an angle x-tan"1 <r. But then yn{z) > X:z for — 1 < z < 0, where
(3.14) holds. This proves b).

c) For z = — 1,

v(-i)=-x,-| + (f-l)'">f 02.
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Fig. A.15.

This completes Step 3.
Step 4. Here we show that
1) As a decreases from +°° to 0, the point of intersection of the trajectory yh{x) with

the axis x = tt/2, y > 0 or with 7r/2 < jc < 57r/2 moves continuously and without change
of direction, as is shown in Fig. A.15. This implies that_y„(7r/2) = 0 for some a0 G (0,00).

2) There exists only one c(=cr0) such that yh(ir/2) = 0.
Proof of 1). Assume, first, yh{ ir/2) > 0. Since yh(x) approaches (x = 5n/2,y = 0) at an

angle tt - tan-1 <x, the trajectories^.*) with larger a are higher than those with smaller
a—at least for (5x/2) — t < x < 5x/2, e small. But then the inequality yha\x) > yha2(x), a,
> a2 is preserved for all tt/2 < x < 5tt/2. (Indeed, if for some 7t/2 < x0 < 5tt/2, yhai(x0) =
yh"2(x0), then yha,(x) < yna*(x) for x0 < x < 5ir/2 since the vector field with larger a has a
smaller vertical component.) This proves that yh"(ir/2) depends monotonically on a. The
proof of the monotonic dependence of the point of intersection of yh{x) with the horizontal
axis is completely analogous.

We omit the simple proof of continuous dependence of intersection points on a—this
proof is based on the behavior of yn(x) near (5x/2, 0) and the theorem on continuous
dependence of solutions on initial data.

3) There exists at least one a0 such that

ySX*/2) = 0.

Fig. A.16.



DYNAMICS OF THE JOSEPHSON JUNCTION 197

a^v A.—\ _—L_y

(c) U=S
Fig. A.17. Phase plane diagrams of (3.1) for 7=1. These are classified by the relation between the unstable

manifold U and the stable manifold S.

To show the uniqueness of such <j0, assume that there are two trajectories, yha°, yha1 ,
both vanishing at x = 7r/2 (see Fig. A. 16) (c0 > ci).

A contradiction is obtained by noting that, on the one hand, y^'ix) > yna'(x), since
this is the case near and to the left of 5ir/2, and thus for all ir/2 < x < 5n/2; on the other
hand, yha\x) < yha\x) by the argument given in Step 3, l). This completes the proof of
Step 4 and of Proposition 3.2.

Comments on Proposition 3.3. We omit the proof of Proposition 3.3 since it is similar to
the case I = l. Instead we give a description of phase plane of the system for the cases i),
ii), iii) (see Fig. A.17).

There are two singular points (modulo 2-k)\ A = (sin-1 /, 0) and B = (x - sin-1/, 0).
The first point is stable (a focus or node), and the second is a saddlepoint; the complicated
singular point for / = 1 (which is analyzed in the proof in Step 1 of the proof of
Proposition 3.2) bifurcates into these two singular points as I becomes less than one.

The role of ye(x) (in the / = 1 case) is replaced by an unstable manifold (denoted by V
in Fig. A. 17) of the saddlepoint B. The role of yh(x) is replaced by the stable manifold S of
a saddlepoint Bx located 2x to the right of B.

The alternatives i), ii), iii) of Proposition 3.3 hold when correspondingly:

i) S lies below U,
ii) S lies above U,
iii) S coincides with U.

I n the case iii) the plane is split into two parts by S = U(continued 27r-periodically in x).
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