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Abstract. A vectorized separation of variables approach is applied to a coupled pair
of parabolic partial differential equations describing the degradation of a thermocline in a
packed bed thermal storage tank. The time-dependent quasi-one-dimensional model
includes the effects of finite tank length, thermal conduction in the direction parallel to the
tank walls, and heat transfer between the fluid and solid components of the bed. For
certain classes of boundary conditions, the analysis leads to an eigenvalue problem for the
spatial dependence of the fluid and solid temperatures in the bed. The eigenvalues and
corresponding eigenfunctions are readily calculated, and completeness of the eigenfunc-
tions follows from a transformation to an integral equation by the construction of a
Green's tensor function. The method is illustrated by an example which arises in the
analysis of the thermal storage subsystem of a central solar receiver power plant.

1. Introduction. The problem of thermocline degradation in a packed bed thermal
storage tank is important for determining precisely how long usable heat energy can be
stored in such a system. One particularly important application is in the proposed central
solar receiver power plants. By passing hot fluid, heated by the sun in the receiver portion
of the system, through a cold bed (charging), heat energy is transferred from the fluid to
the solid portions of the tank (Fig. 1). This stored heat energy may then be reclaimed by
the reverse process at a later time by passing cold fluid through the hot bed (discharging).
Both processes usually result in a moving narrow region, called a thermocline, in which
the temperature gradients of the fluid and solid are relatively large and monotonic. For the
general case of a partially charged bed, maintaining a thermocline between the hot and
cold regions of the bed for reasonably long holding times is essential in order to keep the
hot end of the tank at or near its original temperature. In this way, fluid will emerge from
the tank during subsequent discharge periods at that temperature and will thus be
sufficiently hot to be useful for generating electricity in a turbine. However, heat losses and
continuum processes such as thermal conduction have an adverse effect on the tempeature
profiles and it is thus desirable to know the inherent limitations on the storage system.
Consequently, the purpose of this paper is to describe analytically the time evolution of
the fluid and solid temperature during holding periods when no new fluid enters the tank.

The thermal problem of a fluid flowing through a packed bed consisting of crushed
material was first treated mathematically by Schumann [1], There, the assumption of
constant fluid and material properties and the neglect of thermal conductivity permitted a
closed-form solution of the one-dimensional, semi-infinite problem for nonzero inlet fluid

* Received August 29, 1977; revised version received December 16, 1977.



98 STEPHEN B. MARGOLIS

FLUID

SOLID

t
Fig. 1. Sketch of fluid flow through a packed bed.

velocity. More recently, Margolis [2] considered the thermocline degradation problem for
zero inlet fluid velocity by including the heat conduction terms. Incorporating the effects
of a finite tank length, an analytical solution, applicable to arbitrary boundary conditions,
was obtained by use of a Laplace transform method applied to the governing pair of
coupled partial differential equations for the fluid and solid temperatures. Although
tractable, that type of analysis is rather tedious and thus its chief advantage is its ability to
handle completely general boundary conditions for special test problems. The present
work describes, for the class of boundary conditions of greatest physical interest, an
alternative, more readily usable solution method based on a vectorized separation of
variables approach. This method results in an anharmonic Fourier analysis of the spatial
dependence of the temperature profiles which can be efficiently implemented on a com-
puter and applied to arbitrary initial conditions.

2. Governing equations. Assuming the fluid to be initially at rest and incompressible
and the problem to be globally one-dimensional, the degradation of the thermocline is
described by the energy equations for the fluid and solid portions of the bed. Assuming
constant thermal properties, these are, in nondimensional variables,

2Il - UlT - T\ X. e'T< O M8l h,(Ts Tf) + a 8x2, (2.1)

2lL = h(T - +dt Hs{1< Ts)+ 8xhs(T, - T.) + (2.2)
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where the terms containing h, , hs account for the heat transfer between fluid and solid in
the direction(s) perpendicular to the lengthwise heat flow caused by diffusion. In terms of
dimensional quantities (denoted by*)

7" * T * v* t\ *
T = ifiA . r = _ . /* = (1 -\,A h c\
1 f,8 t * ' r * ' _ * * r *2 ' )

1 A L- Ps <-s

= h*L*2ps*cs* . = h*L*2 . = \r*ps*cs*
' /3ASW (1-/?)X/'Q X8 W ' (2.4a,b,c)

where
7}*, rs* = temperature of fluid, solid; TA* = ambient temperature outside the
tank; pf*, ps* = densities (constant) of fluid, solid; Xf*, \s* = effective thermal
conductivities (constant) of fluid, solid; h* = volumetric heat transfer coefficient
(constant); /3 = void fraction of bed; L* = length of tank; x* = space coordinate; t*
= time coordinate.
In deriving Eqs. (2.1), (2.2), it has been assumed that the solid particles in the bed are

sufficiently small relative to the dimensions of the tank that a continuum formulation is
possible. This justifies the use of the Fourier law of heat conduction, provided that the
thermal conductivities of the fluid and solid are replaced by their "effective" values to take
into account the more intricate paths followed by the heat transport process.

The boundary conditions for Eqs. (2.1) and (2.2) are taken to be of the form

(dTt/dx) + aT, = 0, (8Ts/8x) + aTs = 0 at x = 0, (2.5)

(8Tf/dx) + bTr = 0, (8Ta/8x) + bTs = 0 at x = 1, (2.6)

where a, b are constants such that a < 0, b > 0 (more general boundary conditions are
considered in Sec. 8). These conditions allow for heat losses out the ends at x = 0, 1
according to Newton's law of cooling. Although heat losses out the tank side walls are
neglected in this quasi-one-dimensional model, practical applications indicate that these
losses are small compared to the end losses when the horizontal tank dimension is
comparable with the vertical length of the tank. This is due to the presence of piping which
allows for the passage of fluid into and out of the bed during charging or discharging
cycles and which possesses a relatively large thermal conductivity (cf. [3]). Finally, the
(continuous) initial conditions are

Tr(x, t = 0) = Tr\x\ (2.7)
Ts{x, t = 0) = 7V0,(x) (2.8)

and are assumed to satisfy the boundary conditions (2.5) and (2.6) and to possess
continuous first and piecewise continuous second derivatives.

3. Method of solution. The solution technique is based on a vectorized separation of
variables approach. Substituting the assumed representation

Tr(x,t) = Z W)Ux) (3-1)
k

Ts(x, t) = £ Sk(t)Mx) (3.2)
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into Eqs. (2.1) and (2.2) and requiring that these equations be satisfied termwise gives,
after division of the kih term by Fk£k , Sk\pk , respectively,

<3-4)

In order to separate variables, it must be required that either Fk = Sk or = \pk for all k.
For the boundary conditions (2.5) and (2.6), the latter choice turns out to be applicable
and one can then write Eqs. (3.3) and (3.4) in the vector form

V o
L 0

Fk + Fa'1 0
L 0 Sk~ ,

h, -h,
L ~hs h8 J

Fk
L S„J

1 0

0
t "
t "L Kk J

(3.5)

The fact that the left-hand side of Eq. (3.5) is independent of x and the right-hand side
is independent of t implies that each side must be equal to a (constant) separation vector

Thus, the solution is given by

T'] = V
TSJ V

where the basis functions £*(*) satisfy

+

-y2

-A2J

F*(t)
ISM J {*(*), (3.6)

t "Sk
t "LSk -I

a 'I* 0
L 0 f*.

7
L x2 J

0
L 0J

+

and the time-dependent coefficients are determined from

fk '
-

hf + 72 -h,
. -h. h. + X2.

Fk
isk

0
L 0J

(3.7)

(3.8)

The implicit assumption that the basis functions £*(x) span the solution space of

T,
Lr„

will be justified later.

4. Spatial dependence. The functions %k(x) are determined by the allowable values of
the separation vector. From Eq. (3.7) it is clear that

y2 = a\2 (4.1)

and thus f*(x) satisfies

+ A2^ = 0. (4.2)
This has the general solution

tjk(x) = A cos Ax + B sin Xx, (4.3)
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which will be normalized by setting A = 1 for all k. Requiring that each term in the
expansion (3.6) satisfy the boundary conditions (2.5) and (2.6) determines the allowable
values (eigenvalues) of X, {X*}, and B(Xk). In particular,

= 0 at x = 0, (4.4)

+ b$k = 0 at x = 1, (4.5)

where a, b are the same as in Eqs. (2.5) and (2.6). Substituting Eq. (4.3) into these
conditions yields

B = -a/X, (4.6)

sin X = (b - a) cos X. (4.7)

Thus, the roots X* of Eq. (4.7) satisfy

tan X* = {b - g)Xa./(X*2 + ab) (4.8)

and the basis vectors (eigenvectors) £* are

£„(*) = cos \kx - ■£- sin Xkx. (4.9)
A*

The roots X* of Eq. (4.8) are easily shown to be real. Setting

X* = * + iy, (4.10)
one has that

tanxsech2v , . sec2xtanhv .. ...
tan X* = tt——;—- ■ , + i 7———i—. U2 , (4.11)1 + tan2 * tanlry 1 + tan2* tanh2^

(b - a)Xk x(x + ab)+y2 , aby n
X,2 + ab ( } (x + ab)2 + y2 ( } (x + ab)2 + y2' ( ^

Equating the imaginary parts of Eqs. (4.11) and (4.12) and using the restriction a <0,b >
0 (=> b - a > 0, ab < 0) leads to the condition that y = 0.

The transcendental equation (4.8) has an infinite number of real roots X±t, k = 0, 1, 2,
• • • (Fig. 2). However, from Eq. (4.7), the root X0 = 0 is an extraneous root unless a = b =
0. The positive roots X* are characterized in the following manner. Defining n0, m0
according to

\ab\1/2 < n0ir < \ab\u2 + t (4.13)

m0~< \ab\l>2<(m0 + 1) (4.14)

then, not counting the possible root x0 = 0, there are [(wo + l)/2] (= greatest integer <
(m0 + 1 )/2) distinct roots Xk < \ab \1/2 and an infinite number of values Xk > \ab \1/2 (see
Fig. 2). As k -» a>, Xk -»(k — 1 )x. The exact values of X* are easily calculated numerically
using a Newton-Raphson method.

The basis functions (4.9) are orthogonal on the interval [0, 1] since they are solutions
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Fig. 2. Graphical solution of tan X = (b - a)X/(X2 + ab).

of the Sturm-Liouville problem (4.3) - (4.5). (Note that £_*(;c) = £*(*), so only positive
values of the index need be considered.) That is,

fJ 0
£k(x)h(x) dx = 0, l^k

= 5„, I = k (4.15)

where the normalization constant 8k is

8k = 2 ~ ~ cos2X*) + 2X7 + ^4X7 ~ 4v) Sm 2X*' Xk^°

= 1, X, = 0. (4.16)

5. Completeness of eigenfunctions. In order to be able to express the solution (3.6)
as a sum of the basis functions £*(x) at any time t, these functions must span the solution
space of Tf , Ts. This fact is proven here (for the case where a and b are not both zero) by
first converting Eqs. (4.2), (4.4), (4.5) for the £*(*) into an integral equation and then
utilizing the properties of the resulting integral operator.

The Green's function G(x; y), 0 < x < 1, 0 < y < 1, for the Sturm-Liouville problem

(cP^/dx2) + X2£* = 0, (5.1)

{d^d dx) + a£k = 0 at x = 0, (5.2)

(d^k/dx) + b£k = 0 at x = 1, (5.3)

satisfies the following conditions:

cPG/dx2 = 0, x ± y, (5.4)

lim [G(y + t; y) - G(y - t; y)] = 0, (5.5)
€-0

r dG dG , ^
lim ~dbi ~ =_1' (5'6)
e-»0 l-u-/V x = y+e x = y-e -1
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(dG/dx) + aG = 0 at x = 0. (5.7)

(dG/dx) + bG = 0 at x = \. (5.8)
The general solution of Eq. (5.4) is

G(x\ y) = A + Bx, 0 < x < y ^ ^

= C + Dx, y< x<\

and applying the four conditions (5.5)—(5.8) enables one to determine the four unknowns
A, B, C, D. The result is

G^y^=l-~a(\++bbV~l+aXl x<y'

- +ay (-b - 1 + bx), x>y. (5.10)
b- a( 1 + b)

It is readily verified that solving the problem (5.1)—(5.3) is equivalent to solving the
integral equation

«*) = X2 f G(x;y)Xy)dy, (5.11)
J 0

since Eqs. (5.4) and (5.6) imply that

cFG/dx2 = -S(x - y), (5.12)

where S(x — y) is the Dirac delta function:

5(x - y) = 0, x iL y, (5.13)

[18(x-y)dx= 1, yE(0, 1) (5.14)
Jo

The integral operator H defined by

H0 = f G(x\ y)<l>(y) dy, (5.15)
J 0

where 0 is any element in the domain of H, is a Hilbert-Schmidt operator. It is self-adjoint,
since the kernel G(x; y) is symmetric:

G(x; y) = G*(y-x), (5.16)

where * denotes the complex conjugate. It is also compact (cf. Helmberg [4]), and
therefore bounded:

||H||2<; f f G(x, y)G*(x, y) dx dy < co. (5.17)
Jo Jo

The spectrum of a compact self-adjoint operator is well-characterized, and most of the
results of the previous section follow immediately from the theory of such operators. In
particular, the eigenvalues {1/A*2} are bounded above by ||H|| and have the origin as the
only accumulation point (if the number of eigenvalues is infinite). The eigenfunctions
{£*(*)} corresponding to distinct eigenvalues are orthogonal and span the range of H (cf.
Helmberg [4]). This last result leads to the desired completeness property of the eigenfunc-
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tions. Any continuous function 4>(x) satisfying the boundary conditions (5.2) and (5.3)
and having a continuous first and a piecewise continuous second derivative lies in the
range of H, for one can write

m = / <?(*; y)[-d>"(y)] dy (5.18)
■'o

(To see this, note that because of (5.6) an identity is obtained if Eq. (5.18) is differentiated
twice. The fact that both sides of Eq. (5.18) satisfy the same boundary conditions (5.2) and
(5.3) then gives the result.) Hence, may be represented as an infinite series (uniformly
convergent) of eigenfunctions:

= 2 «*£*(*) = Z «*(cos Xkx - y~ sin Xkx), (5.19)
k k Ak

where the orthogonality of the £*(x) and the normalization integral gives

/ <t>(x)£k{x) dx
J0

&k =

(1 - cos 2A*) + + y— - sin 2X*
2 2Xk2 —2Xk

(Note also that Xk / 0 for any k since l/A^2 ^ ||H|| < 00 => X*2 ̂  1/1| H || > 0.)
The case a = b = 0 must be treated separately due to the fact that a Green's function

satisfying (5.4)-(5.8) cannot be constructed. This behavior is caused by the fact that X = 0
is an eigenvalue of Eq. (5.1) for this case (the corresponding eigenfunction, from Eq. (4.3),
is £k(x) = const., which of course satisfies (5.1 )-(5.3) when a = b = 0). This special case
can be remedied by constructing a generalized Green's function (cf. Courant and Hilbert
[5]), but the completeness result follows directly by noting from Eq. (4.7) that the
eigenvalues are

A* = kir, k = 0, 1, 2, • ■ • (5.21)
and the resulting eigenfunctions are

w*) = COS for, k = 0, 1,2, ••• (5.22)

One can extend 4>(x) to the interval -1 <| x ^ 1 by requiring that <j>(x) be an even function;
i.e.,

4>{x) = <t>(-x). (5.23)
The completeness of the ordinary trigonometric basis

cos kx, sin kx, k = 0, 1, 2, • • • (5.24)

on [-1, 1] guarantees that
oo

<t>(x) = X cos kx + fin sin kx). (5.25)
k=0

But the evenness of <j>(x) and oddness of sin kx give, by use of the orthogonality relations
among the basis functions (5.24),

= J <t>(x) si= / <p(x) sin kx dx = 0 for all k (5.26)
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and thus the eigenfunctions (5.22) span the space of those functions satisfying (5.1 )-(5.3).
As a final note, it is desirable to know for computational purposes how rapidly the

"anharmonic" Fourier coefficients ak in (5.19) tend to zero as k gets large. Assuming that
<f>(x), (p'(x) are continuous and that <t>"(x) is at least piecewise continuous, one can
integrate the integral in Eq. (5.20) by parts twice and obtain

+ 7^7 cj)'(x)(cos Xkx - 7- sin Xkx)
Xk Afc

<»1 | ^ J

/ (f>{x)(cos Xkx - — sin X*.x) dx = T~<t>(x)(s'n + t- cos Xkx)
Jo Afe A ft x = o

- f &"(x)(cos Xkx - ■— sin Xkx) dx. (5.27)
* = 0 Afc J0 Ak

For large k, Xk ̂  (k - \)ir and thus from (4.8) the term (l/Xk)<p(x) sin X*.x|1t=0 tends to
zero like 0(iXk2). Consequently, the asymptotic behavior of ak is

ak ~ 0{\/\k2) as k -»». (5.28)

6. Time dependence. The time dependence of the solution (3.6) is determined by the
evolution equation (3.8) with X2 = Xk2, y2 = aXk2:

d_
dt

Fk
lSk J

-h, - aXk2 h,
h8 -hs - Xk2.

Fk
LSJ (6.1)

k

This has the formal solution

-St!']"exp <M,)
where

M

and
~/T.<0)~| 1 r1 T 7" <°Vv)"

'' W Ux) dx, (6.4)

-hf - aXk2 h,
hs -hs - Xk2-

(6.2)

(6.3)

k
V°'J M_,L7yo,(x)J

where 5k is given by Eq. (4.26) and Tfm, 7V0) are the initial conditions (2.7) and (2.8).
The convenient evaluation of the solution (6.2) requires a knowledge of the eigenvalues

and eigenvectors of M. Defining

a - —h, - aXk2, b = hf, (6.5a, b)

c = hs, d = -hs - Xk2, (6.5c, d)

a 6the eigenvalues ofM = - c d- are

M± = \(d + d) ± \[(a - d)2 + 46c}1'2

= -y[(A. + hf) + X*2(l + a)]

± \Ws ~ hr) + X*2(l - a)]2 + 4hfhs}1/2. (6.6)
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It is readily shown that i*± are both real and negative and that for large k,

li+ a\k2 air2(k - l)2, a 5S 1,

~ -A*2~ -iv\k - l)2, a ^ 1, (6.7)

M- ~ -A*2~ -Tr\k - l)2, a£l,

  a\k2 ~ —air2(k — 1 )2, a ^ 1. (6.8)

The eigenvectors e± corresponding to n± are

e± =

1
n±~a

-d J
The columns of the similarity transformation R which diagonalizes M are the eigen-

vectors e± . Thus, defining

1 1
fi+ — a — a

one calculates

H- - n+ H- ~

~(m+ ~ a)
IX- - fl+ fl- —fj.+

Hence,

exp (M?) = R exp (R 'MR)RM = R exp {n+t) 0
0 exp (m-0 _

1 0u_ - a) exp (n+t) - (ji+ - a) exp (jji-t)

^(n+ - a)(/u- - a)[exp (ji+t) - exp (p_/)

-6exp (n + t) + 6exp (ji_t)

~(fi+ - a) exp (m+/) + (m- - a) exp (ji_t)

Substituting Eq. (6.12) into Eq. (6.2) finally gives

FM = „ ' , [(/*- - d)Fr - 6Sk">] exp (n+t)
M- M +

+ 1

Sk(t) = 7~~ ~~T
(/"- - M+)

(M- - d)Fr - 5,"

+ /*- ~ a
(M- - M+)

■^(/i+ - W> + 5,"

(6.10)

(6.11)

(6.12)

M- - [-(iu+ - a)Fkm - bSr] exp (M_0, (6.13)

exp (n+t)

exp (n_t). (6.14)
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The complete analytic solution for Tr(x, t), Ts(x, t) is now given by Eqs. (3.6), (4.9), (6.13),
and (6.14):

Tf(x, t)
-Ts(x, t)_ = z :]Fk(t) a(cos Xkx - t— sin A**). (6.15)

AsIS AO.
Assuming the initial data is continuous, has a continuous first and piecewise continuous
second derivative, and satisfies the boundary conditions (2.5), (2.6), the series (6.15) and
all partial derivatives with respect to * and t are uniformly convergent for all x and t lying
in the semi-infinite strip 0 ^ * < 1, t > 0. This last result follows from the asymptotic
behavior (6.7), (6.8) of n± as k -> «> (cf. Petrovskii [6]).

7. Example. In order to use the above analysis, one must be given the initial profiles
(2.7), (2.8). The theoretical specification of these profiles arising from a consideration of
the general problem in which fluid flows through the tank is still unsolved for a finite tank
length. However, Schumann's analysis (cf. [1]) for the semi-infinite tank coupled with
various laboratory measurements (cf. [3]) and numerical experiments indicate that the
profiles of Fig. 3a are typical. The actual specification of these profiles has been artifically
constructed according to Eqs. (7.1 )-(7.12) below so as to mimic the general features of the
initial profiles in a partially charged bed immediately after hot fluid has been passed
through the tank. (The finite rate of heat transfer between fluid and solid accounts for the
differences in the two profiles.) However, the solution technique is applicable to arbitrary
initial conditions and is easily implemented on a computer. The 0(XS~2) decay of the
anharmonic Fourier coefficients permits an early truncation of the infinite series solution
and thus results in an efficient algorithm.

The particular initial profiles of Fig. 3a were obtained from the following equations:

TtJ°\x) = Z>! + CuCxo - *)2 + £i(*o - *)4, o <; X ^ x0, (7.1)

T/°'(x) = «! + (a2 - a0

Ts[0\x) = ai + (a2 - cO

1 — cos'

1 - cos4

(— . x ~
V 2 y0~ x0'

\ 2 v0 - Xo'-

x0^x s yo, (7.2a)

*o ^ x ^ y0, (7.2b)
y0 - x0>

TfJ°\x) = D2 + C2(x - y0)2 + E2{x - >>o)\ 1. (7.3)

Eqs. (7.1), (7.3) allow the boundary conditions to be satisfied and (7.2a, b) give the
thermocline-like behavior to the profiles. In order to satisfy boundary and continuity
restrictions, it is required that

T,J°\x = 0) = oj - tl , (7.4)

8T,J°V8x\x,0 + a7}/»U„ = 0, (7.5)
T,J0){x = *0) = «x, (7.6)

T,J°\x = y0) = a2, (7.7)

dTfJ0>/dx\Xml + bT,,.m\Xml = 0, (7.8)

TrJ°\x = 1) = a2 - e2. (7.9)
This gives

D2 — a2, (7.10)
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Fig. 3a-f. Time evolution of temperature profiles for the case a = -2.5, b = 5.0.

r _ —4ei - ax0(at - eQ _ -4c2 + Z)(l - jo)(a2 - e2) ,7m
2x„2 ' 2 2(1 - ^o)2 ' 1 '

r, _ 2«! + axoia, - e,). „ _ 2e2 - 6(1 - >>0)(a2 - e2)
£l 2V ' El ~ 2(1^ ' (7'12)

where ai , a2, x0 , yo , , «2 are yet to be specified and allow some further freedom in the
choice of initial profiles.

For an ambient outside temperature TA* of 80°F (see Eq. (2.3a)), the choice = 4,
a2 = 6 gives a typical pair of initial thermocline profiles between temperatures of 400°F
and 560° F over the interval x0 ̂  x ^ y0. For a tank length L* of 50 feet and a typical mean
bed conductivity X* of 0.674 BTU/hr.-ft.°F (as reported in [3] for an oil/granite bed with
a 25% void fraction), the choices of dimensionless heat transfer coefficients (Nusselt
numbers) a = —2.5, b = 5.0 correspond to dimensional values of a\*/L* = -0.034 BTU/
hr,-ft.°F, bX*/L* = 0.068 BTU/hr.-ft.20F, respectively. These values are roughly an order
of magnitude less than those measured in [3], but the results presented here serve to
indicate a best possible performance for the thermal storage system which might be
attainable with much improved insulation. Choosing = 0.1, e2 = 0.2, jc0 = 0.04,^0 =0.96
gives the profiles shown in Fig. 3a, which of course satisfy the boundary conditions (7.5),
(7.8). Figs. 3b-3f show the time evolution of the thermocline when the typical values (for a
50-foot tank) ofhr,hs,a are taken to be 5 X 105, 2.5 X 106, 0.1, respectively. Note that the
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large values of hr , hs in this particular example prevent the maintenance or formation of
any significant temperature difference between fluid and solid, as one would expect.

One measure of a time r to thermocline breakdown is the time it takes for the
maximum temperature in the bed to shrink to ai plus a certain percentage, say 90%, of a2
— £*!. For the data used here, r ~ 0.017 (850 hr., assuming a solid diffusivity of 0.05 ft2/
hr.), as shown in Fig. 3d. Thus, the important physical result is the quantitative prediction
of Tr(x, t), Ts(x, t) which allows one to determine the point at which no useful heat may be
extracted from the bed due to the decay of the initial profiles.

8. More general boundary conditions. If the boundary conditions for T, and Ts are
different, one cannot choose £*(x) = \pk(x) in (3.3) and (3.4). That is, the basis functions
for T, and Ts are different, since each £„ must satisfy the boundary conditions on Tf and
each \pk must satisfy those on Ts . It turns out, as will be shown in this section, that if one
chooses Fk(t) = Sk(t) for all k (instead of £* = \pk) in (3.3) and (3.4), then one can handle,
for the special case a = 1 ,hr = hs, general self-adjoint boundary conditions of the form

8
8x

8_
8x

T,
L rj

Tr
L T.J +

&o C0

- Co bo -

di cx
L c, bxJ

T,
L 7V

Tf
L TJ

= 0 at x = 0, (8.1)

= 0 at x = 1 (8.2)

(if Co = Ci = 0, the restriction a = 1 is unnecessary).
Choosing Fk(t) = Sk(t) in Eqs. (3.3) and (3.4) in order to separate variables, one

obtains

k

0
0

r*-

a£k 1 0
0

Fk
L FkJ

a*"'
W-

+ L 0

+

0
Fk

f*"1 0
0

hf 0
0 h.J

0 hf
L h. 0J

Fk
L

itt
- <Afr (8.3)

Again, the left-hand side of Eq. (8.3) is independent of x and the right-hand side is
independent of t and hence each side must be equal to a constant separation vector

Y2
-A2 J

Thus,

where

T, = I £*(*)
LiM*)J Fk{t), (8.4)

Fk
L Fk

+ h, + y2 0
0 h. + X2J

Fk
FkJ

£*"
L^"J

Clearly, Eq. (8.5) requires that

+ a 1y2 a xhf

L hs X2 J L

= 0, (8.5)

= 0. (8.6)

hf + y2 = hs + X2, (8.7)
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and thus the equations for and \pk are

d
ftFk + {hf + y*)Fk = 0, (8.8)

_
dx2

k

Li/v
+ a *72 a

L hs h, - hs + 72J

The formal solution of Eq. (8.9) is

= 0. (8.9)

L\M = cos (Mx) L BJ + sin (Mi) ^2

L B^ (8.10)

where

Here,

M = a lry2 a 1hf

L hs hr - hs + 72J

cos (M.x) = R

sin (M.x) = R

cos AiX 0
0 cos A2x.

sin AjX 0
0 sin A2x.

(8.11)

R1, (8.12)

R"\ (8.13)

where Au A2 are the eigenvalues of M and R is the similarity transformation matrix whose
columns are the eigenvectors of M.

The solution (8.10) may be normalized by setting A: = 1 and the two boundary
conditions (8.1), (8.2) on

I*
-

then determine the allowable values of 7, denoted by yk , and ^2(7*), #1(7*), B2{yk)-
The determination of the eigenvalues yk and corresponding eigenfunctions

£*(*)
■ Mx)-

can be related to the solution of an integral equation in a manner similar to that employed
in Sec. 5, if one adopts a fully vectorized approach to the earlier technique. In particular a
Green's tensor function

G(x; y) = G^\x-y) GfXx\y)
■ Gf\x\ y) Gf\x- y}i

(cf. Courant and Hilbert [5]) is constructed for the vector Sturm-Liouville problem

(8.14)

d_
dx

a 0
L0 1.

d_
dx + 0 h,

L hs hr- hs L i/'J + 7S
L i/'frj

= 0, (8.15)

obtained from multiplying (8.9) by the (constant) matrix

a 0
L0 1 J
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subject to the boundary conditions (8.1), (8.2). Each of the vectors
5 w '
■j it) > '=1-2,

is required to satisfy (8.1), (8.2) and

d_
dx

a 0
LO 1 J

d_
dx

lim
e-0

G(ll)
.Gjn j + 0 h,

hs hr-ha-
Gf!i»
Gy"j

7/^ x = ;y+e

lim
dx V' -J

lg^u) J

dx

= 0, x ^ j, (8.16)

= 0, (8.17)

a 0
LO 1 J

Ku

«2t -I

G("
.(ty'-j

Kllfl

«2< -J (8.18)

where

*i, = 1, / = 7, (8.19)
= 0, i + j.

The result is that

-i(x)

Using the implication from (8.16) - (8.18) that

= 72f G(x\y)
J n

£00
LiAO)Jdy. (8.20)

dx
a 0

LO 1 J £o(x;» 0 h,
hs hr - hs

G(x-,y) = -S{x -y) 0
0 —5(x — y). ,(8.21)

where 5(x) is the delta function, it is readily verified that the right-hand side of Eq. (8.20) is
a solution of Eq. (8.15) and satisfies the boundary conditions in Eqs. (8.1) and (8.2). Those
values of y for which Eq. (8.20) is satisfied are the eigenvalues yk, and the corresponding
solutions

I*
-ik-

are the eigenvectors.
In order to prove orthogonality and completeness of the eigenvectors, one imposes the

restriction

h, = hs = h (8.22)

so that the operator

z-Tx
a 0

L0 1 J Tx +
0 h,

-hs hf - hs J
d_

dx
a 0

L0 1.
0 h

L h 0. (8.23)
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is self-adjoint. Consequently, any two vectors

«i (x)
u2(x) J

^i(x)
L v2{x).

in the domain of £ satisfy

f m2*]£Lv2
[fi, v2] £

L U2*
dx

= it^
a 0
.0 1

£>1

Lu2
- [»„»,] ~ a 0

L0 1 J
u/

Lm2* J
(8.24)

X=0

The right-hand side of Eq. (8.22) vanishes if the matrices in Eqs. (8.1) and (8.2) pre-
multiplied by

a 0
L0 1 J

are self-adjoint. This condition is fulfilled when

either a = 1 or c0 = Ci = 0. (8.25)

Under this assumption, replacing

Ml

m2 j

fi
v2J

with

G^"(x; v)
L GJ'Kx; 77).

G^\x- H)
G^Xx- i)J

i,j = 1, 2, in Eq. (8.24) and using Eq. (8.21) leads to the result that

G(£; r,) = GT{V- |) (8.26)

where GT(ri; £) is the adjoint of G(£; »?) (the superscript "V denotes the conjugate
transpose of the tensor).

The fact that the (Hilbert-Schmidt) integral operator in Eq. (8.20) is compact and self-
adjoint implies, as before, that the eigenfunctions are orthogonal; that is,

[ [£**(*), f**(x)]
** n

dx = 0, kt I. (8.27)&(*)
L\l/i(x)S

Also, the fact that the eigenfunctions of a compact self-adjoint operator span the range of
that operator implies that the eigenfunctions

span the space of all continuous vector functions

' u(x) '
U(x) J
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which have continuous first and piecewise continuous second derivatives and satisfy the
boundary conditions (8.1) and (8.2). In particular, one has that

R G(x\ y) u"(y)
L 0"(y) J

u{x)
\-v(x)

Finally, the time behavior Fk{t) is, from Eq. (8.8),

F„{t) = Fr exp {-h - y2)t,

where the anharmonic coefficients Fki0) are given by

dy. (8.28)

= 0)
= 0)J dx, (8.29)Fr - [«»•«, *,-Mi [ ;

= f *S{X)] dx = f [IWl2 + \Mx)\2] dx. (8.30)
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