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Abstract. It is proved that a rolling missile whose initial angular oscillations are
nonlinear will have the same librations as its equivalent common top provided that q > 0
and Zj + Z4 < -2 where q is certain aerodynamic parameter contained in the nonlinear
overturning moment of the missile and Zu Z4 are respectively the least negative and the
largest positive zeros of a certain quartic polynomial.

Introduction. Angular oscillations of a rolling missile round its center of mass are
usually simulated by the oscillations of a common top which is dynamically similar to the
missile. Small vibrations of the missile are known to have qualitative and quantitative
agreements with those of an equivalent common top. However, due to specific launching
conditions or inadequacy of spin, whenever the amplitudes of initial oscillations of the
missile become large, this analogy breaks down (see Rath and Namboodiri [8, 9]). Under
such circumstances, the reliability of the simulation may be questioned so long as one has
not established conditions characterizing the validity of the analogy of the two motions.

The total precessional advance of the missile, as its axis moves from one stationary
state to another, has certain bounds, like the Kohn-Hadamard [7, 5] bounds of apses of a
common top. In case of nonlinear angular motion, the principal aerodynamic moment of
the missile depends strongly on the angle of nutation and as such the apsidal limits of the
missile are not the same as that of an equivalent common top. Even precession and spin do
not always have the same sign, as will be proved in Sec. 8.

Having made these observations, we have laid down conditions under which the
apsidal limits of the missile should exist and be the same as that of the common top. The
apsidal limits of the common top are independent of initial conditions, whereas for the
missile certain launching conditions have to be restricted. This is expressed by the fact that
the sum of the smallest (negative) and the largest (positive) roots of the libration poly-
nomial (2.10) should have a negative upper bound. More precisely, we have proved the
following:

Theorem. A missile will have the same apsidal limits as the equivalent common top if,
with reference to its libration polynomial (2.10), we stipulate that

q > 0, z, + z4 < -2

* Received May 24, 1977; revised version received July 12, 1977.
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where Zi and z4 are the smallest and the largest roots of the polynomial. This result is
conveyed through Sec. 7 and the various theorems are proved in Sec. 6. Our entire analysis
is based on a simple geometrical method outlined by Diaz and Metcalf [2, 3], We do not
claim that the sufficient conditions laid down in the various theorems are always the best
possible ones.

2. Equations of motion. Consider the angular oscillations of a missile about its
center of mass. The differential equations governing such motions are given by [4]

5" + </>'2sin2<5 - (2/B) f M db = E (2.1)
Jo

and

(/>' sin2 5 + ft cos 5 = F (2.2)

where M is the aerodynamic upsetting moment given by

M = n(b) sin 5 (2.3)

with

l*{5) = (BCl2/4s)(\ - 4qs + 4qs cos 5) (2.4)

and E and F are constants of integration, 5 is the angle of nutation and tj> the angle of
precession. 12 and s are given by

ft = (AN/B) and J = (A*N*/4Bn{Q)) (2.5)

where A and B are the axial and transverse moments of inertia of the projectile which has
an axis of dynamic and aerodynamic symmetry and N is the constant axial spin. Here q is a
dimensionless parameter assumed positive for the present analysis. A prime signifies time
derivative.

The elimination of 4>' between Eqs. (2.1) and (2.2) leads to

8'2 sin2 5 + {F — ft cos 5)2 + (ft2 sin2 5/2s) {(1 — 4^) cos 5 +

+ 2qs cos2 5} = E, (2.6)

the well-known Lock-Fowler equations of the yawing motion of the missile.
Now, setting

z = (1 + cos 8)/2, (2.7)

Eqs. (2.6) and (2.2) become

z'2 = H{z) (2.8)

and

</>' = ft(X - z)/2z(l - z) (2.9)

where

H{z) = z( 1 - z){E - a(2z - 1) - (8(2z - l)2} - ft2(A - z)2 (2.10)
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and
\ = (F+tt)/2Q. (2.11)

The constants a and 0 appearing in Eq. (2.10) are given by

a = (S]2/2.y)(l - 4qs) and (3 = qiY (2.12)

It may be noted that for real motion the zeros z, (/ = 1 to 4) of H(z) are real and satisfy
the following inequalities:

Zj < 0 < z2 < z < z3 < 1 < z4. (2.13)

With this (2.8) becomes

z'2 = 4/3(z - zi)(z - z2)(z3 - z)(z4 - z), (2.14)

whence
z, + z2 + z3 + z4 = 2 - (a/20), (2.15)

Z;Z2 + Z[Z3 + ZiZ4 + z2z3 + Z3Z4 + z2z4 = (50 — E — 3a — 122) 4/3, (2.16)

z!z2z3 + ziz2z4 + Z2Z3Z4 + Z1Z3Z4 = (0 — £" — a — 2S22A)/4I8 (2.17)

and

Z1Z2Z3Z4 = - fi2A2/40, (2.18)

By subtracting (2.17) from (2.16), it follows that

zi(z2 + z3 + z4) + (z2z3 + z3z4 + z2z4)(l - z) - z2z3z4 = 1 - (a/20) + S22(2A - l)/4/3.

Using (2.15) and (2.18) again, we obtain

(Zi - 1) {(z2 + z3z4 - 1) - (z2z3 + ZsZ4 + z2z4)} = z2z3z4 {1 - z,(2X - 1 )/A2( (2.19)

from which we get
z, - 1 = z2z3z4 {1 - (2A - I )/A2}/Dx (2.20)

and

2l = DJD. (2.21)
with

= (z2 + z3 + z4 - 1) - (z2z3 + Z3Z4 + z2z4) + z2z3z4(2A - 1)/A2

and

D2 = (Z2 + Z3 + Z4 - 1 ) - (Z2Z3 + ZaZ4 + Z2Z4) + Z2Z3Z4,

so that
21 ~ 1 _ (A - 1 V (

But

Z2Z3Z4

Zj V A ) \ D2

D2 = {\ -z2)(1 - z3)(z4 - 1)

and hence we have finally

I A| {(1 z.)(1 z2)( 1 z3)(z4 1)}1/2 =|A - 1| (- ZiZ2Z3z4)1/2. (2.22)
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Also, (2.19) can be rewritten as

Z2Z3<1 + ztz4(2X - 1)A2 - (zt + z4)}
Z2 + Z3_1+ (l-zJO-zO (2'23)

Hence, whenever

z, + z4 < 1 + z,z4(2X - 1 )/X2, (2.24)

z2 + z3 < 1, (2.25)

a property which is generally observed in the case of an ordinary gyroscope for X < 1/2
(cf. [3, Eq. (1.14)]. It may be noted that inequality (2.24) is always satisfied whenever

Zi + z4 < 0 and X < 1/2.

3. The apsidal angle. From (2.8) and (2.9) the apsidal angle of a Lock-Fowler mis-
sile is given by

= p fl(X -z)dz
L 2z(l — z)(H2z(l - z)(H(z))v

= sgnjl p (-z1z2z3ziY'2h(z) dz 
" 2 |X| J„ z(l - z) {(z - z2)(z3 - z)}1 2 U

due to (2.18). In (3.1)

h(z) = (X - z)/{(z - z,)(z4 - z)}1/2. (3.2)

Splitting (X - z)/z( I - z) into partial fractions and using (2.22), we have, for S2 > 0

$ = sgn (X)$, + sgn (X - 1) <i>2 (3.3)

where

d) -i\n\ r° ( ^ 1Z2Z3Z4)1 ^ i(z) dz
$1 (1/2) L z{(z - z2)(z3 - z)r (3-4)

and

= n/2) r <(1 -Z.K1 -z2)(l - z3)(z4 - \ )}V2l{z)dz
' i22 (1 - z){(z - z2)(z3 - z)}1/2

with

/(z) = {(z - z,)(z4 - z)r1/2. (3.6)

4. Certain geometrical propositions on the functions h(z) and l(z). In order to estab-
lish the bounds for $ we need to prove certain elementary geometrical propositions
regarding the functions h{z), and /(z) defined in (3.2) and (3.6). It may be noted that the
graphs of these functions have the asymptotes z = z( (/ = 1,4) and are continuous over the
interval z, < z < z4.

At any point of the curve (3.2) we have

{(z - Z[)(Z4 - z)}3/2, dh{z)/dz = az + b (4.1)
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and

where

{(z - z0(z4 - z)}5/2, cPh(z)/dz2 = 2az2 + cz + d (4.2)

a = 2X - (zj + z4), (4.3)

b = 2z,z4 - X(zj + z4), (4.4)

2c = (zj + z4)2 -8A(z1 + z4) + 12z!z4, (4.5)

2d = 3X(zj + z4)2 - 4Z!Z4(A + z, + z4). (4.6)

Therefore, if we denote the stationary point of (3.2) by z* and the points of inflection by
z** (i = 1, 2), they are given by

z* = -(b/a) = {X(Zl + z4) - 2z1z4}/{2X - (z, + z4)} (4.7)

and

where

,** = (-c ± (c2 - &ad)I/2)/4a = [{8X(z1 + z4) + (z, + z4)2 - 12z,z4}

± (z4 - z,){32(X - X,)(X2 - X)|1/2]/8{2X - (z, + z4)} (4.8)

X1 = i{(z1 + z4) + 3N/2(z1-z4)/4|, (4.9)

X2 = hi(zi + z4) - 3>]2(z1 — z4)/4}. (4.10)

Accordingly, we shall write (4.1) and (4.2) as

)(z - z,)(z4 - z))3/2-dh{z)/dz = a(z - z*) (4.11)

and

{(z - zi)(z4 - z)}5/2-6PM2)/^ = 2fl(z - Z!**)(Z - z2**). (4.12)

Further, from (3.2) and (4.7) we also have

h(z*) = 2(X - z,)(X - z4)/a{(z* - zi)(z4 - z*)}1^2. (4.13)

Evidently the points of inflexion are real iff Xj < X < X2, and in the particular cases
when X = X( (/ = 1,2) Z!** = z2** and it corresponds to a point of undulation on the curve
(3.2) [10],

It may be noted that

h(z) - —2{(z - zO/(z4 - z)}1/2, when X = z,

= 2{(z4 - z)/(z - zi)}1/2, when X = z4

= ~{{z - z!)/(z4 - z)\V2 + {(z4 - z)/(z - zO)1'2, when a = 0. (4.14)

The general form of the curve of h(z) for different cases (discussed in the present
communication) is shown schematically in the following diagrams.
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Fig. 1. [a > 0; 21<X<f<z,].

Fig. 2. [a < 0; 2, < X < z<].
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^O)

* *•* X*
f, = ̂  ~ 5- = 3-i Vi

Fig. 3. [a < 0; X, < X = z, < z,].

Fig. 4. a < 0; X, < X < zt < z,.
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Fig. 5. [a < 0; X < X, < z, < z,].

Fig. 6. [a = 0; z, < X = z,** < 0 < z4].
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Now we shall state the following propositions and prove them separately.
Proposition I. Whenever zx < X < z4 the curve (3.2) can have only one point of

inflexion and no stationary point (in the interval z, < z < z4).
Proposition II. When X, < X < z„,

z, < z* < z,** < z2** < 0 (4.15)

provided zx + z4 < 0.
Proposition III. Defining

C{z) = //(0)( 1 — z) + h(\)z (4.16)

and

T(z) = h(\) + z-dh(0)/dz (4.17)
whenever

Zi + zt < - 1, (4.18)

the inequalities

C{z) < h(z) < T{z) (4.19)

are uniformly satisfied for — < X < 2/3 and 0 < z < 1.
Proposition IV. If zx + zt < 0, the inequalities

/(0)</(z)</(l) (4.20)

are uniformly satisfied for 0 < z < 1.
Proof of Proposition I. From (4.9) and (4.10) we have

X, - z, = (z4 - z,)(4 - 3yJ2)/8 < 0,

X2 - z4 = (z4 - z1)(3v/2 - 4)/8 > 0, (4.21)

so that Xj < z, < z4 < X2.
Since points of inflexion z** of h(z) are real for Xi < X < X2, they are a fortiori so for z,

< X < z4 and are also distinct. But we shall prove that for z^ < X < z4 there is only one
point of inflection in the interval zx < z < z4. We note that, due to (4.8),

2a(Zl - z1**)(z1 - z2**) = 3(X - zI)(z1 - z4)2/2

and

2a(z4 - zi**)(z4 - z2**) = 3(X - z4)(z! - z4)V2,

from which the following conditional inequalities follow:

zj < Z!** < z4 < z2**, when a > 0,

Z;** < Zi < z2** < z4, when a < 0,
(4.22)

if we assume for definiteness that zx** < z2** (see Figs. 1 and 2).
In the particular case when a = 0, again there is only one finite point of inflection given

by (see Fig. 6)

Zl** = X = (Zl + z4 )/2, (4.23)

which also lies well within the limits under consideration. Thus from the above, it is clear
that the curve of h{z) can have only one point of inflection for Zj < X < z4.
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That the stationary point given by (4.7) does not occur in the interval zx < z < z4 can be
seen thus. Using (4.7), we obtain

z* - zx = (z4 - z,)(X - z,)/a
(4.24)

z* - z4 = (z4 - Zi)(Zi - X)/a

from which it follows that whenever z, < X < z4, z* < zx or z* > z4 according as a ^ 0.
This completes the proof of Proposition I.
Proof of Proposition II. When Xt < X < zu there are two distinct points of inflection, let

us say for definiteness

z,** = { c + (c2 - 8ad)1/2}/4a (4.25)

and
z2** = {-C - (c2 - 8ad)U2}/4a. (4.26)

Clearly

a = (X - z,) + (X - z4) < 0 (4.27)

and if we assume z1 + z4 < 0, we have from (4.5) and (4.6)

2c = {—a(zi + z4) — 6X(Z[ + z4) + 12ziz4} < 0

and d < 0 and therefore

z,** < z2** < 0. (4.28)

Due to (4.27) and the first of (4.24) we have

z, < z*. (4.29)

Next, we shall prove that

z* < zf*. (4.30)
Substituting for X! and X2 from (4.9) and (4.10), we have

(z4 - z,)2 ~ 32(X - X.) (X2 - X) = 32(X - z,) (X - z4) > 0.

Obviously
(z4 - Zj) > {32(X - Xj) (X2 - X)}1/2. (4.31)

Hence

z* - = (z4 - Z,) [(z4 - Zj) - {32(X - X.) (X2 - X)}1/2]/8a < 0,

as 'a' is negative due to (4.27). Hence (4.30) follows.
Combining (4.28) through (4.30), we have (4.25) (see Fig. 4) and this completes the

proof of Proposition II.
It may be noted that in the specific cases when X = inequality (4.15) degenerates to

z, < z* < zj** = z2** < 0

and to (see Fig. 3)

z, = Zj* = z,** < z2** < 0

when X = zx. Further, Xx ^ zx in view of (4.21) and (2.13).
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Proof of Proposition III. For the sake of convenience let us consider the following cases
separately.

Case (i) (— < X < XJ. In this case, the curve of h(z) lies completely below the z-axis
and has only one stationary point occuring in the interval zx < z < 0 (see Fig. 5). When the
condition (4.18) is satisfied it can be easily seen that a, b, c and d appearing in (4.3) to (4.6)
are negative, and therefore from (4.1) and (4.2) we have

dh(z)/dz < 0, (4 32)

cPh(z)/dz2 < 0

in the interval 0 < z < 1. Consequently h(z) is a continuously decreasing convex function
in the interval 0 < z < 1 and therefore should lie between the chord joining (0, h(0)) and
(1,^(1)) and the tangent at (0, h(0)) of (3.2).

Since (4.16) and (4.17) give respectively the ordinates of any point on the chord and the
tangent mentioned above, in the interval 0 < z < 1, we have (4.19) as required.

Case (ii) (\x < X < zx, X, ^ zx). It can be easily seen, in all the three cases under
consideration, that (4.32) follows immediately from (4.11) and (4.12) due to Proposition II
and the result is again (4.19).

Case (Hi) (zx < X < 2/3). Due to Proposition I, the curve of h(z) in the present case, has
only one point of inflection and in general, either of the two conditional inequalities (4.22)
holds.

First, when zx < X < 0, (4.6) yields d < 0 due to (4.18), and therefore, from (4.8),

z** X z2** = d/2a,

has the opposite sign to a, that is, zx** and z** have the same or opposite signs according
as a 5 0. This together with (4.22) proves that (3.2) has no points of inflection in the
interval 0 < z < 1. Hence, using (4.22) to (4.24) in (4.11) and (4.12), we have again the
inequalities (4.32). Thus the validity of (4.19) follows.

In particular, when a = 0, there is only one point of inflection given by (4.23), and it is
negative due to (4.18) (see Fig. 6). The rest of the proof now follows straight away.

Secondly, when 0 < X < 2/3, we shall prove that for admissible values of zx and z4 (see
(2.13)) d is negative provided (4.18) is satisfied.

From (4.6), it is easily seen that d is negative if

X < X = 4zxz4(zx + z4)/{3(z! + z4)2 - 4ziz4).

Presently we shall prove that X > 2/3 and therefore, for 0 < X < 2/3, d < 0 should follow.
When Zi + z4 < — 1, to show X > 2/3, we may define an c > 0 such that zx + z4 = —(1 +

e), and therefore

X - i = (|) [2z1z4{3(z1 + z4) + 2| - 3(z, + z4f]/D3

where D3 is a positive expression.

As z4 > 1, we further have

X - I > {(I) (3e2 + 8e + 1)/Dt) > 0,

for all e > 0. This now enables us to conclude from (4.22) that the curve of h(z) has no
point of inflection in the interval 0 < z < 1, for from (4.8) we have zx** ■ z2** = d/2a < 0,
as a is positive in the present case. From (4.24) we also have

z* > zt. (4.33)
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Fig. 7.

Hence, in view of (4.33) and (4.22), (4.32) follows at once from (4.11) and (4.12).
Consequently we have the inequality (4.19).

Combining all the several cases discussed above, the proof of proposition III follows.
Proof of Proposition IV. From (3.6) we have

{(z - z!)(z4 - z))3,2-dl(z)/dz = z - (Zi + z4)/2

and

{(z - zj)(z4 - z)}5'2 ■ d2l(z)/dz2 = 2z2 - 2(z, + z4)z + {(Zl - z4)2 + 2(z, + z4)2}/4

so that dl{z)/dz = 0 only for z = (z, + z4)/2 < 0 and d2l(z)/dz2 > 0 in the interval 0 < z < 1
as Zi + zt < 0.

Therefore /(z) is an increasing convex function in the interval 0 < z < 1 and lies
between the chord joining the two points (0, /(0)) and (1, /(1)) and the tangent at (0, /(0)),
as shown in Fig. 7. Hence we have

1(0) + z(dl(0)/dz < l{z) < /(0)(1 - z) + /(1 )z. (4.34)

Since z (d l(0)/dz) > 0, we have

/(0) < 1(0) + z (d l(0)/dz) < l(z), for 0 < z < 1 (4.35)
due to (4.34). Again, from (4.34)

l(z) < 1(0) +{/(!)- 1(0)} z < /(1), for 0 < z < 1 as /(1) > 1(0). (4.36)
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Hence, combining (4.35) and (4.36), (4.20) follows.
This completes the proof of Proposition IV.

5. Auxiliary integrals. For our subsequent references we shall consider the following
integrals:

A = Q- ) ^ 3 {z2zj(z - z2)(z3 - z)r dz/z, (5.1)

h=ii) r{(i _z2)(i ■za)/ {z~z2)(za■ zw,2dz/(i -(s-2)

h = (y) £3 {(z - z2)(z3 - z)}-dz, (5.3)

where z2 and z3 are such that 0 < z2 < z3 < 1. Obvioulsy [2]

/, = /, = /. = 7t/2. (5.4)

6. Bounds for the apsidal angle. The following theorems show that a Lock-Fowler
missile has the same bounds as its equivalent common top whenever its launching
conditions are restricted. The restriction is characterized by z, + z4 < — 1. It may be noted
that in case of the common top zx -> — and this inequality is always satisfied for all finite
values of z4. Hence we claim that the Kohn-Hadamard [7,5] limits of a common top are
independent of initial conditions.

Theorem I. — it < 4> < —tt/2 whenever z, + z4 < 0 and - °° < X < 0.
Proof. To obtain the lower bound for $ we note from (3.1) that

$ = 1 T3 {-z1z2z3zty12 h{z) dz
2IXI ^ z(l - z) {(z - z2)(z3 - z)}

where S2 > 0, an assumption which can be made without loss of generality. By using
Proposition III this becomes

$ > — fIXI i2
(-z1z2z3z4)1/2C(z)^z

2 |X| z(l - z) {(z - z2)(z3 - z)}l/

Substituting for C(z) from (4.16) in the above inequality with the values of h(0) and h(i)
obtained from (3.2), we have

*>-/.+ ~ ') {  \1/2/2

1 IX| 1(1 - Zl)(l " z2)(l - z3)(z4 - 1)/ 12

where A and /2 are as given in (5.1) and (5.2).
Using (2.22), this yeilds

$>-/,- /2 = 7T. (6.1)

Coming to the upper bound for $, we observe from (3.3) that

$ = (6.2)

But by Proposition IV /(z) > 1(0) and therefore from (3.4) and (3.5) we have

$,>/, = tt/2
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and
$2 > /2{(1 - z,)(z4 - l)/(-ZiZ4)}1/2 = (tt/2){( 1 - zt)(z4 - l)/(-z,z4)|1/2

whence from (6.2) we get

$ < —(tt/2)[1 + {(1 - z,)(z4 - l)/(-z,z4)}1"] < —tt/2 (6.3)

as
0 < {(1 - z,)(z4 - 1)/(-ZjZ4)}1/2 < 1.

Hence Theorem 1 follows from (6.1) and (6.3).

Theorem 2. -x/2 < $ < 0 whenever Zi + z4 < 1 and X = 0.
Proof. To prove the theorem, let us first consider the lower bound for 4>. When X = 0,

(3.3) yields

$ = (6.4)

Also, from (4.34), we have /(z) < /(1), since /(1) > 1(0) whenever z, + z4 < 1, and therefore
from (3.5) <J>2 < h ~ 7t/2.

Thus, it follows from (6.4) that

<i> > — tt/2.
For the upper bound we have plainly $ < 0, as the integrand appearing in $2 (cf.(3.5)) is
positive during the entire motion under consideration. Hence the theorem.

Theorem 3. 0 < $ < ir/2 whenever z, + z4 < -1 and 0 < X < 2/3.
Proof. To establish the lower bound we note from (3.3) that

$ = - $2 (6.5)

where $,(/ = 1,2) are given by (3.4) and (3.5). Due to Proposition IV, it is easily seen that
<t>! > tt/2 and $2 < tt/2, whence from (6.5) we have $ > 0.

To get the upper bound, we note from (3.1) and Proposition III that

$ < — r
2X J2*2

(-z,z2z3z4)'/2- T(z) dz
z( 1 - z){(z - z2)(z3 - z)}1/2

Substituting for T{z) from (4.17) and simplifying, we have

* <'■ + '• = T« + W-'
due to (2.22). In (6.6) /, and /2 are given by

U = Id - z.X*4 - l)/(-Z!Z4)}1/2, (6.7)

U = {X/2(l - X)((l/zj + l/z4) - 1 (6.8)
and are such that

0 < /> < 1, (6.9)
-1 < f2 < 0, (6.10)

For, from (6.8) and (2.13) we obtain
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X(l/z,+ l) . X | 3(X — 2/3)
2(1 -X) 2z1(l-X) 2(1 -X) ' (6' }

since 0 < X < 2/3, and other inequalities in (6.9) and (6.10) are evident.
Using (6.9) and (6.10) in (6.6), we have $ < x/2. This proves our assertion.

Theorem 4. $ > 0 whenever zl + z4 < 0 and 2/3 < X < 1.
The proof is the same as in the previous case for the lower bounds; see also the next

section.
Theorem 5. $ > 7r/2 whenever zx + z4 < 0 and X > 1.
Proof. When X = 1, from (3.3) we have $ = $! > ir/2 (see (6.4)). When X > 1, again

from (3.3), we have

$ = $1 + $2

and that > ir/2 and $2 > 7r/i/2 (see (6.4) and (6.5)). Hence, $ > (l + and since
0 < fi < 1, $ > 7t/2. Hence the Theorem.

7. Upper bounds when X > 2/3. As to the question of finding an upper bound when
X > 2/3, the only answer is that there does not exist a sharp upper bound in such cases.
However, by suitable majorization we may obtain the following upper bounds for $. If we
assume that zt + z4 < -2, then by an obvious extension of Proposition III the inequalities
(4.19) will be uniformly satisfied over the entire interval - °° < X < 1 and therefore in
particular over the interval 2/3 < X < 1. Hence we have from (6.6)

$ < (1 + /1/2)x/2.

By using (6.9) and (6.11), it follows that

7T 3(X - 2/3)\< f V + / * i (t=t) <7-"
When X = 1, it may happen that z3 = z4 = 1; in this case we have from (3.3)

= *, « I f ( ^ V'\ _A_ = ro (7 2)
2 I l(z — z.Xz " z2)J z(l-z) {'-Z)$

*2 l(z - z0(z - z2)J z(l-z)
and therefore a finite upper bound for $ does not exist when X = 1.

For X > 1, we note from the nature of h(z) that either h(0) or C(z) can be taken as an
upper bound of h(z) in 0 < z < 1; i.e.,

h(z) < h(0) for 1 < X < z4 and z4 < X < X2 when h(0) > h(\)

< C(z) for X2 < X < oo and z4 < X < X2 when h{0) < h( 1).

When h(z) < C(z) we can prove that (see Theorem 1)

$ < 7T (7.3)

whereas when h(z) < h(0), we have directly from (3.3)

$ < I + I {z2z3/(l - z2)(l - z3)r/2 = \ {1 + X/i/(X - 1)},

due to (2.22).
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Fig. 8.

Now since 0 < fx < I when z, + z4 < — 2, we get

$ < | + ttX/2(X - 1) = tt(2X - 1 )/2(X - 1). (7.4)*

When X > 1, as the bounds given by (7.4) exceed those given by (7.3), we may select (7.4)
as the upper bound for $ over the interval 1 < X < c°

It may be concluded here that all bounds of $ we have established in Sees. 6 and 7 are
valid without a single exception provided Zj + z4 < -2. The various bounds of $ are
shown in Fig. 8. For this, also refer to [4] and [7], the parameter r used in [4] and [7] is
related to X (given here) through 2X = 1 + r.

8. On Hadamard's theorem. The Halphen-Hadamard theorem [5, 6] on a heavy
symmetrical top states that the total advance in azimuth of the top describing loops has
the same sense as its precession on the lowest level. The mathematical analogue of this
theorem in our case is

$ > 0, z2 < X < z3. (8.1)

In the present system, the result (8.1) is not valid. This may be seen from the following
example.

If we choose S2 = 1, q = 3.69, s = 2, z0 = 0.15, z0' = 0 and <j>0' = 0.392, we have X =
2z0(l — z0) + z0 = 0.25 and

*(7.4) is true when zt + z, < 0.



THE APSIDAL LIMITS OF A ROLLING MISSILE 17

(i -2")E = 4z0(l - zo)(0„'2 - q) + [— - 2q J (2z„ - 1) + q = 6.884.

Now Eqs. (2.8) and (2.9) are given by

z/2 = 14.72(z - zO(z - z2)(z - z3)(z - z4) (8.2)

where z, = — 0.016, z2(= z0) = 0.150, z3 = 0.950, z4 = 1.882 and

,, 0.25-z
2z(l -z) (8.3)

We have, as before, $ = — <i>2 and these elliptic integrals may be evaluated thus [1,
pp. 113 and 225]:

pO.95= 0.033
0.15

dz
MB z{(z - zi)(z - z2)(z3 - z)(z4 - z)}1/2

Using the transformation

Sn2u = (z3 - z0(z - z2)/(z3 - z2)(z - zt)

we have

* n Z"2'616 1 - 0.828Sn2u , r, tMI + 0.087W, dU ° 0 403

and likewise [1, pp. 115 and 228]

fJ 0

2 616 1 - 0.828S«2w
0.177 / i+o.990Sn2udu L663'

Now clearly we have $ = —1.26 < 0.
If we can put an additional restriction by which we limit our choice of initial conditions

we may state an analogue of the previous result by the following theorem.
Theorem 6. If zi + z4 < 0, we have $ > 0, whenever z2 < X < z3.
The proof of this result is already implied in Theorems 3 and 4.
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