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Abstract. A recently developed variational principle of virtual dissipation along with
a new approach to the thermodynamics of open systems is applied to coupled mass and
heat transfer in a porous solid containing a fluid. General differential field equations are
derived directly from the variational principle. A general energy flux theorem is formu-
lated. Vapor-liquid phase transition and capillary condensation are discussed. Field
equations for nonequilibrium adsorption are also obtained. Lagrangian equations with
generalized coordinates are derived directly from the variational principle without use of
the field equations. They provide the foundation of finite-element methods as well as of
many other techniques particularly suitable in geothermal systems analysis.

1. Introduction. A principle of virtual dissipation has recently been developed gener-
alizing d'Alembert's principle to nonlinear dissipative thermodynamic systems [1], This
new principle is a natural outgrowth of earlier work providing a variational-Lagrangian
formulation of linear thermodynamics [2], Application of this variational principle pro-
vides directly both the field equations of general continuous systems as well as the
corresponding Lagrangian equations with generalized coordinates. The Lagrangian equa-
tions thus obtained constitute a powerful tool for systems analysis of very complex
physical and technological systems. They are formulated from basic physical invariants of
the system without a priori detailed knowledge of the field differential equations. This is in
contrast with current procedures which derive variational principles from the particular
differential field equations for each type of problem.

An important aspect of the new approach is its unified interdisciplinary nature, which
embodies a complete synthesis between mechanics and thermodynamics. This is well
illustrated by its application to the nonlinear thermorheology of continua [3] which covers
a large category of phenomena.

Another innovation which has considerably enlarged the field of application of the
variational technique is the development of an entirely new fundamental approach to the
thermodynamics of open systems [4, 5, 6]. The concept of "thermobaric potential"
replaces Gibbs' chemical potential and bypasses the well-known difficulties associated
with it. Another essential concept which has been introduced is that of entropy convection
which is given a precise definition. This has led to new results in the theory of chemical
reactions [4, 5]. Along with the principle of virtual dissipation, these new concepts were
applied to the non-isothermal dynamics of Newtonian and non-Newtonian fluids [6],
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Another application is to the non-isothermal finite strain mechanics of porous solids with
a fluid mixture and nonporous solids with thermomolecular diffusion of solutes [7],

The present treatment is an application to heat and mass transfer in a rigid porous
medium containing a single fluid. While the context is more restricted than in a concurrent
paper [7], the fluid mechanics of the pore fluid is analyzed here in considerably more
detail. I n particular, phase transitions and capillary condensation are considered as well as
nonequilibrium adsorption effects. New theorems are also derived which govern the
energy flux.

The results obtained earlier [7] may readily be combined with the present treatment to
take into account solid deformation and coupled diffusion effects when the pores contain a
fluid mixture.

2. New concepts in the thermodynamics of open systems. We shall start with a brief
account of newly developed concepts and methods [4, 5, 6], We consider a system
constituted by a primary cell CP , a large rigid supply cell Cs and a large isothermal
reservoir at a constant temperature T0 called a thermal well TW. The cells CP and Cs with
the thermal well TW constitute a "hypersystem". In any reversible transformation the
work accomplished on the hypersystem defines the collective potential. No external matter
or heat is added to the hypersystem. Matter and heat are transferred internally within the
hypersystem by a reversible process which involves the combined use of heat engines and
mechanical pumps.

In the particular case of a porous medium with a rigid matrix, we assume a primary cell
of unit volume, containing a compressible viscous fluid in the pores. The fluid and the
solid are assumed in thermal equilibrium at the temperature T. A large rigid supply cell
contains the same fluid at the temperature T0 and pressure p0 .

An important property of the collective potential V is the fact that it depends only on
the state variables of the primary cell. This can easily be shown by noting that by
definition the collective potential is the internal energy of the collective system. We may
write

V = CU + H0 (2.1)

where It is the collective internal energy of the pair of cells CP + C.s and H0 is the thermal
energy acquired by the thermal well. The quantities V and Ti denote increases from a zero
initial value. Since the transformation is reversible the total entropy change of the
hypersystem is zero. Hence

S + (H0/T0) = 0 (2.2)

where S is the collective entropy of the pair of cells CP + Cs ■ Elimination of H0 between
Eq. (2.1) and (2.2) yields

V = Ot - 7oS . (2.3)

The initial state of the primary cell for which we put Of = S = V = 0 is chosen arbitrarily to
suit the problem. The primary cell is considered to be jacketed and rigid while a mass m of
fluid may be added in the pores by injection through thejacket. The thermodynamic state
of the primary cell is determined by its temperature T and the mass m of pore fluid added.
On the other hand, the thermodynamic state of the large and rigid supply cell is deter-
mined by the same mass m of fluid which had to be extracted. Hence T and m, which
define the state of the primary cell, also define the state of the collective system CP + Cs ■
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As a consequence It, S as well as 13 are completely determined by T and m. We have
therefore referred to V as the cell potential. The cell potential may of course be considered
as a measure of availability. However, its use as a new thermodynamic potential different
from the classical definitions was introduced by the author as a basic concept in irrevers-
ible thermodynamics [2] and referred to as a generalized free energy. In later years the
term "exergy" was also used by some authors to designate related concepts.

We now consider the transfer of a mass of fluid dm from the supply cell Cs to the
primary cell CP . This transfer is accomplished reversibly by the combined use of mechani-
cal pumps and heat pumps and has been called a thermobaric transfer [4, 5], The work
accomplished is written

dV = \p dm . (2.4)
The differential coefficient \p is the thermobaric potential, [4, 5], Its value is

tip, T) = fT (^ + dds) (2.5)
J PoTo V P '

where

d = T- T0 . (2.6)

The integration is along an arbitrary path of continuous variation of pressure p, temper-
ature T and specific mass p, and ds is the entropy differential of the unit mass along this
path. The notation p in the upper limit of the integral denotes the pressure of an external

fluid in thermodynamic equilibrium with the pore fluid. Hence it is defined thermodynam-
ically and is not necessarily the fluid pressure in the pores which in some cases cannot be
clearly defined. For simplicity we have used the same notation p and T as variables along
the path of integration and for their values at the upper limit of integration. Expression
(2.5) was derived and discussed earlier [4, 5], It represents the reversible work necessary to
extract a unit mass at the pressure p0 from the supply cell, bring it to a pressure p and
temperature T in equilibrium with the primary cell and inject it adiabatically into it. This
continuous process is accomplished reversibly by the simultaneous use of mechanical
pumps and heat pumps. The first term in expression (2.5) represents the work of the
mechanical pumps and the second term the work of the heat pumps operating between the
temperatures T and T0 .

Note that for an isothermal system with 0 = 0 expression (2.5) reduces to the "pressure
function"

* - rdjL (")
J n, 0Po P

of classical fluid mechanics.
In addition to adding masses to the primary cell, we may also add heat directly by

means of a heat pump. With the appropriate additional term, expression (2.4) for the
increase of cell potential becomes

dV = V dm + 9 dst (2.8)
where 6 dsT is the work of the heat pump required between the temperatures T and T0 in
order to inject reversibly an amount of heat energy T dsT . The differential dsT is the
increase of entropy of the primary cell due to this heat injection. This quantity is not a
state variable. Actually, one of the state variables is the collective entropy S of the pair of
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cells CP + Cs . Its differential is

c/cS = s dm + dsj (2.9)

where

/pT
ds (2.10)

is the relative specific entropy of the fluid. Relation (2.9) derived earlier [4, 5] is obtained
by considering the collective entropy increase of the system Cp + Cs including the mass dm
when the latter is brought to equilibrium with the primary cell. This entropy increase is s
dm. During reversible injection into Cp the total entropy does not change; hence s dm
represents the collective entropy increase of Cp + Cs after addition of the mass dm to the
primary cell Cp . Therefore s dm is the increase of S due to convection, while dsT is the
increase due to the direct addition of heat energy by conduction.

Elimination of dsT between Eqs. (2.8) and (2.9) yields

dV = $ dm + 8 d§, (2.11)
where

<P = t - ds (2.12)
is the convectivepotential [4, 5]. The differentials in (2.11) are now state variables. It is now
valid for irreversible transformations while (2.9) is not. We derive with m and S as
independent variables,

dV/dm = 4>, 8V/8 S = 8 . (2.13)

It is interesting to substitute the value (2.11) of efO into Eq. (2.3). We find

(fU = $ dm + Td§, . (2.14)
This is formally similar to the expression used by Gibbs [8] to define the chemical potential
ix as the differential coefficient of dm. However, there are several fundamental differences.
Eirst, It and S are the collective internal energy and collective entropy of the pair of cells
Cp + Cs . Second, $ is not defined by Eq. (2.14) as the differential coefficient of dm but
independently by Eq. (2.12). Hence relation (2.14) constitutes a theorem. Third, d§> is
defined in a precise way by (2.9) as the sum of convective and conductive terms. Finally,
within a given hypersystem the variables in (2.14) do not involve any undetermined
constants.

The convective potential <i> may also be written in a different form by introducing into
Eq. (2.12) the values (2.5) and (2.10) for \p and s. We derive

<i> = ? — Ts (2.15)
where

e = /"T (— + Tds) (2.16)J P0T0 V P 1

is the increase of collective internal energy of the pair of cells Cp + Cs in the thermobaric
transfer of a unit mass from Cs to Cp . We may also write

= p _ p± + a (2.i7)
P P 0
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where

u = [PT - p d(-) + Tds ■ (2.18)
J P„T0 L \ p 1 J

Note that this integral represents the classical increase of the fluid internal energy per unit
mass when its pressure and temperature vary from p0 , T0 to p, T. Hence £ may be
interpreted as the increase of specific enthalpy of the fluid when the pressure and temper-
ature vary from p0 , T0 to p, T. In analogy with i, which was referred to as the relative
specific entropy, we may call c the relative specific enthalpy of the fluid.

In contrast with classical concepts and procedures, the quantities <f>, s and £ are
completely defined for a given hypersystem and do not involve any undetermined con-
stants.

3. Relations between state variables. Liquid-vapor transitions. In Eq. (2.11) for dV
we shall consider m and S as state variables of the primary cell of unit volume of porous
medium. We recall that m is the mass of pore fluid added to the primary cell starting from
an arbitrary initial state, of temperature T' and pore fluid pressurep'. As already pointed
out, the collective quantities CIL, S, and V for the primary cell are put equal to zero in this
initial state while m is initially zero by definition.

The two state variables m and S are related to other state variables such as the
temperature T, the pore pressure p, etc. We shall now examine in more detail such
relationships. Note that we have defined the pore pressure p as that of the fluid located
outside the cell and in thermodynamic equilibrium with the pore fluid. This takes care of
all kinds of physical-chemical and capillary interactions in the pores.

However, it is very instructive to consider the case where the interaction of fluid and
solid is negligible. In this case it makes no difference if we consider the fluid to be located
outside the solid. The pressure p, density p, and temperature T of the fluid obey the
equation of state

P=P(P,T) . (3.1)

Its relative specific entropy, defined by Eq. (2.10), is

/.PT
ds . (3.2)

PoT„

The volume occupied by the fluid in the pores is

/-SL±i , (3.3)

where m0 is the initial mass in the pores and / is the porosity, i.e. the pore volume per unit
volume of porous medium. We may express p and s as functions of m and T:

(m0 + m . .(m0 + m
P = P\—J— ,TJ , s = s\—-f— ,TJ ■ (3.4)

Since the fluid is located outside the solid, the collective entropy S may be evaluated
separately for the fluid and the solid and added together. The mass m0 of fluid initially at
the temperature T' and density p' = mjj is brought to the temperature T and density p =
(m0 + m)/f. Its collective entropy increases by the most
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m0 + m „
A——'T - sy f, r (3.5)

Another mass m of fluid is extracted reversibly from the supply cell and brought to the
density p and temperature T. Its collective entropy increases by the amount

./ m0 + m \msy j ,T) . (3.6)

The solid matrix is brought from the temperature T to T with an entropy increase

Ss = ms r c£p_dT , (3.7)
J T' '

where ms is the mass of solid per unit volume of porous medium and cs(T) its specific heat
as a function of the temperature. The total collective entropy of the primary cell is the sum
of the three terms (3.5) (3.6) and (3.7). We write

S(m, T) = (/«„ + w)i(m" + T) - mjy y , r) + S. . (3.8)

This also provides the temperature T as a function of m and S:

T=T{m, S) . (3.10)

This relation may be represented in an entropy diagram, where T is plotted as a
function of S yielding a family of curves defined by m as a parameter. In the region where
liquid and vapor coexist, it also provides the saturation variable 9C representing the
fraction of fluid mass in the vapor phase. Its value is 9C = 0 for a pure liquid phase and 92
= 1 for a pure vapor phase.

Attention is called to the fact that S is a better state variable than T since in the wet
vapor region the temperature does not provide any information on the amount of
saturation described by the variable 9C.

Assuming again no interaction between fluid and solid, we use the same reasoning to
evaluate the collective internal energy Tl. We find

Ufa, T) = (m + m0)u(m + ™\ t) - m0u[y , r) - m y + <U. (3.11)

where

01, = ms j\dT (3.12)

and u is defined by (2.18) as

. + Tds
' poTo L V P

(3.13)

The term ~mp0/p0 represents the negative work of extraction of the mass m from the
supply cell.

Since T is a function of m and S by relation (3.10), we express

01 = 01 (m, S) (3.14)

as a function of m and S.
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With this value for 11, the collective potential (2.3) is

V(m, S) = H(w, S) - T0§ . (3.15)

It is interesting to verify expression (2.11) from this result by forming the differential

cfU = cfU - TodS . (3.16)
From (3.11) we obtain

</U = \u — — ) dm + (m + m0) dit + dlls . (3.17)x P 0 '

Since the pore volume / is constant, Eq. (3.3) yields

- {m + m0) d (-) = — • (3.18)\p / p

From this relation and Eq. (3.13) we derive

(m + m0) du = - dm + (m + m0)T ds . (3.19)
P

With this value, expression (3.17) becomes

gPU = t dm + (m + m0)Tds + *fUs (3.20)

where e is the relative specific fluid enthalpy defined by (2.17).
Since cf\ls = T d§,s the differential of (3.8) is

dS = s dm + (m + m0) ds + j: (FU-s ■ (3-21)

From relations (3.20) and (3.21) we derive

dU = (i - Ts) dm + T d§> (3.22)
and with this value of tfU., expression (3.16) becomes

dV = (t - Ts) dm + 6 dS . (3.23)

This coincides with Eq. (2.11) by introducing the value (2.15) of <J?.
In the more general case where fluid and solid interaction may not be neglected, the

values of S and 11 must be obtained from more elaborate physical-chemical theories or
from direct physical measurement. In the latter case we integrate expressions (2.9) and
(2.14), assuming a reversible process:

pmT
S(m, T)= (s dm + dsT) (3.24)

J 07"

and
rmT

11 (m, T) = / ($ dm + TdsT) . (3.25)
J0T'

In these integrals the values of s and $ are measured physically as a function of m and T.
This requires the measurement as a function of m and T of the pore pressure p which,
according to our definition, is the pressure of a fluid in equilibrium with the pore fluid and
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located outside the pores. For example, because of capillary effect the fluid may be in
liquid form in the pores while in equilibrium with its vapor outside at a higher pressure
(see below). This outside pressure and the temperature determine the values of i and $. In
this more general case we may also determine an entropy diagram as described above.

4. Mass balance, entropy balance, entropy production and flux coupling. The po-
rous medium is considered as a continuum. The rate of mass flow of the pore fluid per unit
area of the medium is M, , where the dot denotes a time derivative. Conservation of mass
is expressed by

m = — (8 Mi/dXi) (4.1)

where x, are cartesian coordinates and m is the rate of increase of fluid mass per unit
volume. Integrating (4.1) with respect to time with zero initial values yields

m = - (dMt/dx,) ■ (4.2)

In this relation m is the increase of fluid mass per unit volume, and Mt, called the mass
displacement [6, 9], is the total mass of fluid which has been flowing per unit area since the
initial time / = 0. Relation (4.2) constitutes a holonomic mass balance constraint.

In order to express the entropy balance we consider the rate of flow of heat energy per
unit area //, . The rate of increase of entropy per unit volume due to //, is

1 8 Hi ..• <4'3)

In order to take into account the entropy convected we consider a domain S2 of the
continuum of boundary A. The rate of entropy increase of the whole domain 12 is

Ssi = [ sT dil — f sMitii dA (4.4)
^ n J a

The second integral is the entropy convected into 12 through the boundary A, of unit
normal nt , and s is the relative specific entropy of the fluid at the boundary. This
convection term provides the key to the treatment of open systems. It is derived by the same
reasoning as used in the derivation of Eq. (2.9) for the case of a reversible transformation.
With the value (4.3) for sT integration by parts yields

$a - [ sT* dU — f Sini dA (4.5)
J a

where
sT* = - (Hi/r)(8T/dXi) (4.6)

and
Si = sMt + (Hi/T) . (4.7)

The quantity sT* is the rate of entropy production per unit volume due to thermal
conduction while is the total rate of entropy flow. We put

SiT = Ht/T . (4.8)

Hence

Si = sMt + SiT (4.9)
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where sMt is the rate of entropy flow due to fluid convection and is rate of entropy flow
due to thermal conduction in the bulk fluid-solid medium.

Eq. (4.5) may also be expressed as a volume integral

Ss!= f (sr*- 4^) dU ; (4.10)Jn x cXi /

hence we obtain the entropy balance equation [6, 7]

5=--^- + ^* (4.11)
8xt

where S is the entropy per unit volume. It generalizes Meixner's relation [10] since it
includes the entropy convection term sMt of Eq. (4.9). Putting

s=-(dS,/dxl) (4.12)

and integrating with respect to time with zero initial values yields

s = (0Sl/8xi) (4.13)

where s is the entropy supplied per unit volume by convection and conduction and St is the
total entropy displacement vector. This concept was introduced earlier in several pub-
lications [1, 3, 6, 9],

Note that Eq. (4.13) for the supplied entropy balance is analogous to (4.2) for mass
balance and is also holonomic. This property plays an important role in the variational
theory.

In the most general case of anisotropy the law of thermal conduction is

(9 77dxt = — Ay Hj (4.14)
where Ay = A„ is the symmetric thermal local resistivity tensor of the bulk fluid-solid
medium. Its symmetry is a consequence of Onsager's principle [11, 12]. It is a function

Ay = A tj(m,T,xk) (4.15)

of the fluid mass increase m in the pores, the local temperature T and also of the local
coordinates xk if the bulk medium is not homogeneous. With the values (4.8) and (4.14)
Eq. (4.6) becomes

ST* = \it $,T $jT (4.16)

which yields the local rate of entropy production as a quadratic form in S? with
coefficients depending on m, T and xt .

Until now we have assumed that the local rate of entropy production is due only to
thermal conduction. Actually additional entropy production is due to the fluid flow rate.
The rate of entropy production s* in this case is expressed by a straightforward general-
ization of Eq. (4.16) as a quadratic form in Mt and SiT. We write

Ts* = CJ MtMj + 2Cu™MtSjT + T\tjSiT$jT . (4.17)

I n the variational theory it is more convenient to consider the rate of dissipation Ts* instead
of.s:* [1,3, 6], The coefficients are functions of m , T and location xt . The quadratic form
embodies the local validity of Onsager's principle [II, 12] and symmetry properties

<V = C]t\ Aiy = A„. (4.18)
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The cross-term coefficient C<j™ represents the coupling between mass flow and heat flow
as exemplified by the Knudsen effect [13].

With the total entropy production as expressed by (4.17) Eq. (4.11) retains the same
form:

S = - (dS,/8x,) + s* . (4.19)
Integration with respect to time with zero initial values yields

S = - (8S,/dxt) + s* = s + s* . (4.20)

This is the integrated form of the entropy balance equation.
The thermodynamic state of the porous domain is completely determined by the

scalar fields m and S. Eqs. (4.2) and (4.20) show that these state variables may be replaced
by the two vector fields St and A/, and an additional scalar s*.

The rate of dissipation (4.17) may be written in terms of the variables St instead of SiT .
From (4.9) we obtain

SiT = Si-sMt . (4.21)
Substitution of this value into (4.17) yields for the rate of dissipation

Ts* = CuMiMj + 2 C,jMMt$j + TXjSiSj (4.22)
where

Cu = CUT - (Cw™ + Cjt™)s + T\tJs2 ,

CtiM = CtJ™ - TXtJs . (4.23)

We note that if Cl;™ = 0 the coupling between Mi and StT vanishes; however, there
remains a coupling term

CUM = - TktJs (4.24)

between M, and St whose nature is purely convective.

5. Variational principle of virtual dissipation. We consider the hypersystem consti-
tuted by the porous domain 12 the supply cell Cs and the thermal well TW. An important
property of the collective potential is its additivity. Hence we may write the collective
potential of the domain 12 as

V = [ VdU (5.1)
J a

where Vdil is the potential of the infinitesimal cells composing the domain, and 15 is its
local value per unit volume. Also

= Ot - T0S (5.2)

where 01 and S are respectively the local values per unit volume of the collective internal
energy and entropy of the cell, as defined in Sec. 2, in terms of the supply cell Cs .

In Sec. 2 the potential V is defined by means of reversible work on the hypersystem. We
shall now consider the completely general case of an irreversible transformation. The first
principle of thermodynamics applied to the system constituted by the domain U and the
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supply cell Cs is written in variational form as

fdHdn = bW - ltbqt . (5.3)
Jsi

The left-hand side is the increase of collective internal energy of the system 12 + Cs . On the
right-hand side we have the virtual work bW of the external forces applied to 1] and the
virtual work -/,<5<7, of the reversed inertia forces in the sense of d'Alembert's principle.
We denote by /, the generalized inertia forces associated with the variable <7, . Elimination
of It between Eqs. (5.2) and (5.3) yields

f (SV + TobS) = 8W - Ifiq, . (5.4)
SI

Variations are applied only inside fi. Hence the variation of total entropy produced in +
Cs is obviously

[ bSdtt= [ s* dU (5.5)
il J SI

where bs* is the variation of entropy produced locally per unit volume. Hence (5.4)
becomes

f (8V + T0 bs*) dQ. = bW - I,bqt. (5.6)
J n

Furthermore, using the value (2.11) and the value (4.20) of S, we derive

bV + T0bs* = bRV + Tbs* (5.7)

where

bRV = $bm + 6bs = bm + -^r bs (5.8)dm 8 S

and bR denotes a restricted variation obtained by varying only m and s, hence dropping bs*
in the variation ofO. Relation (5.6) becomes

/, <5qt+ [ (bKV + T8s*)dU = SW. (5.9)
J a

This constitutes the principle of virtual dissipation as derived earlier in a more general
context [1, 3], In most problems the work of the external forces may be separated into two
terms

bW = - bG + bW (5.10)

where bG is the virtual work of body forces derived from a potential field such is gravity,
while b W' is the virtual work of other forces. We put

(P = G + f V dttf VdU. (5.11)
J SI

This quantity is the mixed collective potential defined earlier [ 1, 2] as a unified concept for
the combined mechanics and thermodynamics of the system. By introducing the values
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(5.10) and (5.11) the principle of virtual dissipation becomes

ItSq, + 5„(P + [ Tbs* di2 = bW. (5.12)

The integrand 77).v* is the virtual dissipation per unit volume.
We have introduced fl, 3] a local dissipation function which according to (4.22) is

expressed as

£> = | Ts* = }C,jM,M, + Ci/'MiSj + § TX.jS.Sj . (5.13)
By Euler's theorem on homogeneous functions the local rate of dissipation may be written

20=75-= + i,. (5.14,

Hence the virtual dissipation due to variations 8Mt and bS, is

m JW,SM> + IS, ss> ■ (5 I5)

By definition the values of the dissipative forces <92)/8M, and d2D/dSi remain frozen
during the variations [1, 3],

6. Variational derivation of the field equations of mass and heat transfer. The me-
chanical and thermodynamic state of the porous domain is completely described by
three fields. They are the vector field 5, of entropy displacement, the vector field Mt of
pore fluid mass displacement and the scalar field s* of entropy produced per unit volume.

We may vary these field variables arbitrarily inside the domain with zero variations at
the boundary. The virtual work of the inertia forces is

I,&Qi ~ / ("?o + w)a, bu, dil (6.1)
J S2

where at is the fluid acceleration, but its virtual displacement and m0 + m is the mass of
fluid per unit volume, ma being the initial value. Since

(m0 + m)8ut = bMi , (6.2)

the variation (6.1) becomes

hbq, = f a,bM, dil . (6.3)

If we denote by Ste) the body force potential per unit mass, we may write

G = f (m + /h0)9 dil (6.4)
J SI

= f £bm dil. (6.5)
J u

From (5.8), (5.11) and (6.5) we derive

6«(P = [ (ipbrn + dbs) d£l (6.6)
J a

and
bG
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where

V = $ + 9 (6.7)
is a mixed convective potential.

For the isothermal case 6 = 0 we obtain $ = \p where \p is expressed by (2.7). The
potential (6.7) then coincides with the expression obtained by Hubbert in his formulation
of Darcy's law [14],

We now introduce the values (5.15), (6.3) and (6.6) of the variations into the varia-
tional principle (5.12) with 8W' = 0. This yields

/(< afiMt + v 8m + 98s + 8Mt + <5SJ dtl = 0 . (6.8)

Using the holonomic constraints (4.2) and (4.13) we write

8m = - — 8Mt 8s = - —— 8St . (6.9)8xt dXt v '

We introduce these values into (6.8) and integrate by parts. Variations <55, and 8Mt are
arbitrary and are chosen to vanish at the boundary. We therefore equate to zero the
coefficients of these variations in the integrand and obtain

Sv , 81D n 86 8S)
+ jr^jsr0 ■ (6-10)

To these six equations we add a seventh equation (5.14), i.e.

Ts* = 23D . (6.11)

Together they govern the seven field components Mh St and s*.
The acceleration of the fluid is

a< = ff + t"JS (6'i2)
where the average fluid velocity is

Vi = Mi/(m0 + m) . (6.13)

The acceleration may be written in several well-known alternative forms. For example,
multiplying eq. (6.12) by m0 + m and taking into account the condition of mass con-
servation

8m/8t = — (8Mt/8Xi) , (6.14)

we obtain

, , , 8Mi , 8 ( MjMj \ f£te^ra0 + m)at = —  1- —— —;—(6.15)v 8t 8xj \m + mj '

which brings out the change and flow of momentum.
Another form is obtained by introducing the vector

d = v X curl v (6.16)
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where v is the velocity vt. The acceleration is

8Vi 1 8v2"< = 77+2^-a< (6-17>

where Q, are the components of ft and v2 = vtvi . It is interesting to note that (X, = 0 in
one-dimensional, axially symmetric, and spherically symmetric flows.

Another form of the field equations (6.10) is obtained if we vary S? instead of St . The
virtual dissipation in this case is obtained by using a dissipation function SDT derived from
(4.17) and expressed in terms of A/, and StT. We write

£>T = $Ts* = \CtjTMtMj + Cu™ti,$jT + iT\,jS,TSjT . (6.18)

The virtual dissipation in this case becomes

f)T)T PT)'?'

T8s* =eKTlbMi +dkbStT ■ (619)
We substitute the value (6.19) for T8s* instead of (5.15) into the variational principle

(5.12) and integrate by parts, taking into account the constraints (6.9) for 8m and 8s. We
obtain

+ + . (6.20)

From (4.9) the variation of 8St is

8St = s8Mt + 8SiT . (6.21)
We introduce this value into the variational principle (6.20), where 8Mt and 8SiT are now
arbitrary, and equate to zero the coefficients of these variations. Taking into account the
values (2.5) and (6.7) of \p and <p we derive

I dp , aq , 8®T n 86 55DT n
+ — 'T- + a + T7T = 0 > "a TFT 0 . (6.22)p 8x, 8x, 8Mi 8xt 8Si

This brings out explicitly the fluid pressure gradient in the field equations. For Mt = 0 the
last equations express thermal conduction.

Capillary condensation. The field equations (6.10) are valid if the fluid is a vapor
which condenses as a liquid as concave droplets on the walls of the pores. Because of local
equilibrium the value is the same whether referred to the vapor or the liquid. However,
in this case the velocity and acceleration of the fluid are different for the vapor and the
liquid. This may be taken into account by defining an average accleration at such that
atbMi represents the virtual work of the inertia forces. The field equations retain the form
(6.10) because they involve only the total mass displacement of vapor and liquid. The
effect of capillary condensation is embodied in the coefficients of the dissipation function
which depend on and the fraction DC of vapor present. Hence according to the entropy
diagram the coefficients may be expressed as functions of m and s. It should be noted that
in a more refined treatment a hysteresis effect should be introduced in these functions of m
and 8 because condensation actually depends on the time history of the system.

In the case of capillary condensation the vapor pressurepv is different from the liquid
pressure pL . This is due to surface tension. However, $ and hence also = $ + g are the
same for both fluids since local equilibrium is assumed. The fluid pressures are easily
evaluated by considering the convective potential of the fluid at the pressure p and



VARIATIONAL IRREVERSIBLE THERMODYNAMICS 33

temperature T for a plane liquid-vapor interface. We may write

* - - f-'fc, r" (6.23)
J pT Pv J pT PL

where pv and pL are respectively the vapor and liquid densities. If the pressure differences
are small, Eq. (6.23) yields approximately

(pv - p)/pv = (PL - p)/Pl (6.24)

where p and pL are vapor and liquid densities at p and T.
The difference

Pv ~ Pl = Pc (6.25)

is called the capillary pressure [15]. Solving Eqs. (6.24) and (6.25) for pv and pL, we obtain

Pv = p —— Pc~p— — Pc , (6.26)
Pl ~ Pv Pl

Pl=P ——~P-Pc ■ (6.27)
Pl ~ Pv

When the condensed liquid presents concave surfaces, pc > 0. For example, if the
concave surface is a hollow hemisphere of radius r,

pc = 2y/r (6.28)

where y is the surface tension. Hence in this case

Pl < Pv < p ■ (6.29)

7. Energy flux theorem. A very general and fundamental energy flux relation may be
derived directly from the field equations (6.10). We add these field equations after
multiplying the first three by Mt and the last three by . Taking into account expression
(5.14) for Ts* and noting that 80/dsL = 8T/8xh we obtain

Mm + + -p" $ + Ts* = 0 . (7.1)
SXi 8xt

By introducing the values (4.2), (4.13) from m and s and noting that according to (4.20) we
may put S = i + s*, Eq. (7.1) becomes

(vMt + TSt) + <pm + TS = 0 . (7.2)oXi

The last terms may be expressed in the following form:

tpm + TS = <$>m + d§> + Cj/w + 7"0S . (7.3)

From relation (2.11) we derive

$>„; + 0S = V (7.4)
and from (2.3)

"0 + 7"„S = «u®. (7.5)
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Hence Eq. (7.2) becomes

+ -j- (<pMl + T$t) + Oi + = 0 . (7.6)
O Xi

The kinetic energy may be introduced in this equation by using the value (6.17) for at .
Since the vectors Mt and (Xj are perpendicular we have

Midi = 0 . (7.7)
We derive

Ma = Mt ^ + yMt . (7.8)8t 2 dXi

By definition (6.13) the rate of mass flow is

Mi = m'Vi (7.9)

where m' = m + m0 is the total fluid mass per unit volume. We may write

Svt 1 , 8Vi \ 8 1 8mMi   = -m i),  = — (m v ) - -r-v ——8t 2 8t 2 8t v ' 2 8t

1 A4 8V* X 8 to 1 2 8 Mi
(7.10)

2 8xt 2 8xt 2 8xt

By taking into account the condition of conservation of mass (6.14), substitution of the
values (7.10) into (7.8) yields

««4|fr"v) + •
With this value Eq. (7.6) becomes

~ + y j-t (m'v2) + 0 + = 0 (7-12)

where

Ft = tpM + TSi + \Mtv2 (7.13)

is the energy flux vector. Eq. (7.12) constitutes the energy flux theorem. The energy flux
may be written in a form related to a more familiar expression by expressing <p in terms of
the relative specific enthalpy I. From (2.15) and (6.7) we derive

<£> = 3> + Q = € — 7s+ Q . (7.14)
By introducing this value of <p and the value (4.9) for into expression (7.13) the energy
flux becomes

Ft = (i + 9)M, + TS? + \Mtv2 . (7.15)
The term

TSiT = Ht (7.16)
represents the heat flux by conduction in the compound fluid-solid medium.

In one-dimensional steady flow Mt = const., we neglect the conductive heat flux and
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the kinetic energy, and Eq. (7.12) reduces to

e + g = const. (7.17)

For example, in a geothermal problem with vertical fluid flow it means that the relative
specific enthalpy decreases by an amount equal to the increase of gravity potential g. If g
= 0 the relative specific enthalpy e is constant. As a consequence we derive the well-known
Joule-Thomson effect of vapor expansion through a porous plug.

8. Non-equilibrium adsorption. The foregoing results are applicable to the case of
solid-fluid interaction represented by surface adsorption in the pores provided local
equilibrium is assumed. However, the local equilibrium assumption is not valid with time-
dependent adsorption. The variational thermodynamic theory is readily generalized to
such cases. We consider separately the mass displacement M/ of the fluid in the pores and
the mass displacement Mf in the adsorbed layer. We put

, 8M,a _ 8 Mi'= (8-D

where ma and mf are the masses adsorbed and pore fluid added per unit volume of porous
medium. The quantity represents the mass adsorbed from the fluid with a coefficient v
and a variable £ equal to zero in the initial state. The field variables are now Mf, M/, St, £
and s*. The collective entropy per unit volume is

s-~fr+s* (8'2»
where s* is the entropy produced and St the total entropy displacement. The collective
potential is

V=V(ma,mr, S) (8.3)

and

dV = 3>a dma + <t>f dm, + ddS. (8.4)
The convective potentials and <&f are derived in exactly the same way as in Eq. (2.11)
using corresponding thermobaric potentials. The rate of dissipation is

Ts* = 22)' + kA(ma , m, , S) (8.5)

where

3D' = 3D'(m0, mf, S, Mta, M/, St) (8.6)

is a quadratic form in Mf, M/ and with coefficients functions of ma , mf and S. The
quantity A, also a function of ma , mf and S, plays the role of an affinity. If the medium is
nonhomogeneous the values of 3D' and A may also depend on the location xt . An
expression for A is obtained by considering Eq. (2.3) with the value (8.4) for cfV. We write

CU - T0$ = $ama + Qfriif + d§>. (8.7)

Consider a transformation such that M" = M/ = $t = 0. This implies li = 0 andS =
s*. With these values Eqs. (8.5) and (8.7) become

Ts* = Ai Ts* = k($, - <1>a)l (8.8)
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Hence

A =v{*t- *a). (8.9)

At equilibrium A = 0 and = <J>a .
The rate equation for £ may be written in the form

Hence (8.5) becomes

with a dissipation function

A = | K (ma , m, , S). (8.10)

Ts* = 23) (8.11)

2D = D'+|A'£2. (8.12)

We now impose arbitrary variations bMta, 8M/, 8St and on the field variables.
Application of the principle of virtual dissipation, following exactly the same procedure as
in Sec. 6 leads to the field equations

d<pq <93) _ n 8<pt 83D

(8.13)

+ . = 0 + -^r- = 0
8xt 8Mta ' 8Xi 8 Ml

80 , 8& 55)
^+ °- it

where *3a = $a + Q and ipf = <b, + g. For simplicity we have neglected the accelerations.
In the more general context of irreversible thermodynamics the variable £ plays the

role of a local internal coordinate, and the system exhibits viscoelastic properties discussed
quite generally in earlier linear theories and more recently in the nonlinear case [3, 7]. The
nature of the adsorption is quite general. It may include relaxation effects of fluid
penetration in micropores.

9. Lagrangian equations and finite-element methods. The principle of virtual dis-
sipation (5.12) leads directly to Lagrangian-type equations which provide a powerful tool
for systems analysis in very complex technological problems. In particular, they are ideally
suited for the treatment of geothermal systems. The method has been derived and applied
repeatedly in earlier work [1, 2, 3]. More recently it was applied to the non-isothermal
analysis of deformable porous media containing a fluid mixture [7]. As an illustration we
shall apply the method to the case of a porous medium with non-equilibrium adsorption
analyzed in sec. 8. For simplicity we shall assume that the accelerations are negligible, and
that the entropy produced s* may be neglected in the value (4.20) of S. The medium is then
described by variables

Mta = M,a(^1 q2 ■ ■ ■ qn xt),

Mt' = M,f{qiqt q„ xt), (9.1)

Si =Si (qx q2 ■ ■ ■ qn *;),

£ = £(<?! <72 ■■■ qn X,),

where qt are n generalized coordinates. We write the principle of virtual dissipation (5.12),
putting /, = 5 W' = 0, as

86" + f T8s* dU = 0. (9.2)
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In the variation of <5(P' we have substituted the total variation 5 instead of the restricted
variation 5R since s* is neglected in the value of S. Furthermore 6" is defined as

<5(P' = 5(P + f dnjSidA + [ vnt5 M/ dA (9.3)
J A J A

where

(P = [ [U + (w0 + ma + m,)Q]dQ. (9.4)
J n

The unit normal to the boundary A of is denoted by nt .
The quantity (?' represents the collective potential of the domain Q plus an additional

domain CA represented by driving cells distributed along the boundary A. This is done
because application of the variational principle requires that no variations are applied at
the boundary of the total domain S2 + CA . However, variations need not vanish at the
boundary A of U. The virtual dissipation is derived from expressions (8.12) for 20:

I• {(J?"''+ + H + JJfs() <*■ (,-5)
This may be written

l-m*dQ = bqt (9.6)
oCji

with the total dissipation function

D = JjDdQ = yhfofoqj. (9.7)
It is a quadratic form in qt with coefficients functions of qt . Substitution of (9.3) and (9.6)
into the variational principle (9.2) and cancellation of the coefficients of 5qt yields the n
Langrangian equations

where *=- K. dSi .

is the generalized thermodynamic driving force.
These equations are the same as those obtained in heat transfer problems. Numerous

techniques for the use of these equations have been developed [9] and are applicable here.
Finite-element method. The Lagrangian equations (9.8) yield immediately a large

variety of finite-element methods. For example, we may divide the domain U into tetrahe-
dral elements whose vertices constitute the nodes of the network. Values of the variables
Mia M/ St and £ at the nodes may be chosen as generalized coordinates qt while their
values inside tetrahedral cells are determined by linear interpolation of the values q, .

If needed, the value of s* may be taken into account, as already suggested in [7], by
introducing the values of s* at the vertices as additional unknowns and using linear
interpolation for the value s* inside the cells. The required additional equations are
obtained by verifying Eq. (8.11) at each node.
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