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Abstract. This paper deals with an electrostatic problem for the field between two
charged conductors ±w0 maintained at potential ±V in bi-cyclide coordinates (u, v, \p). In
this coordinate system, Heine functions are used, of which something is known. Heine
functions are the solutions of Heine differential equations. Though the problem is to be
solved in the same manner as the problem in the case of bispherical coordinates, it has not
been clarified because of the complexity of Heine functions. A Heine differential equation
is solved to satisfy the boundary condition that the functions and their derivatives are
bounded at the ends of interval, and eigenvalues and eigenfunctions are evaluated. A
formula giving the capacity between two electrodes is presented and numerically calcu-
lated.

1. Introduction. This paper deals with an electrostatic problem for the field between
two electrified conductors ±u0 maintained at potential ±V, respectively, in bi-cyclide
coordinates («, v, y) [1, 2], Bi-cyclide coordinates are given when the two-dimensional
plane in Fig. 1 is rotated about the f-axis. We deal only with the axisymmetrical case.
Though the problem is to be solved similarly to the problem in the case of bispherical
coordinates [3], it has not been solved before because of the complexity of Heine func-
tions, of which little is known. The eigenvalues and eigenfunctions for the Heine differen-
tial equation are obtained numerically in the same manner as in the solutions of Sturm-
Liouville eigenvalue problem. A formula giving the capacity between two electrodes is
presented and is numerically calculated.

2. Potential function. In the axisymmetric case, Laplace's equation is independent of
the angle and is given as follows:

V ^ a2il2anu2dnu2snv cnv r"1' ™ 8u

+ cnu dnu —8v
snv cnv 8<p

A dv _

cnu dnu 8<j>
A 8u.

= 0, —K < u < K, 0<v<K', (1)

where

A = 1 — dn2usn2v,
U2 = (1 - sn2udn2v)(dn2v — k2sn2u),
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Fig. 1. Two-dimensional plane of bi-cyclide coordinates.

a is the distance from origin to focus, k is the modulus of the Jacobian elliptic functions
sn(u, k) and sn(v, k') [k'2 = 1 - k2], for which snu and snv are the abbreviations re-
spectively, and cnu, cnv, ■ ■ ■ are similar abbreviations.

Suppose that Eq. (1) has a solution of the form

4> = A1,2M(u)N(v) (2)

and let a be a separation constant; then the Laplace equation (1) is separated into

AW _ d_M + u _
aw cnu anu au

cPN snu(cn2v sn2v) dN 2
-r-r +  1   —j + (-2 dn2v +a) = 0 (4)
dv2 snv cnv av
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Substitution of sn2u = z into (3) and dn2v = z into (4) reduces both to the canonical form

ii. + UI 4-_2_ + 2 ) dZ 2z-pc
dz2 2 \ z z — 1 z — c) dz 4z(z — l)(z — c) '

where 1/A;2 = c, /? = a for (3) and k2 - c, ^ = a/k2 for (4). Eqs. (3) and (4) are the
Jacobian form and (5) is the algebraic form of the Heine equation, whose solutions are
Heine functions. Eq. (5) has four singular regular points 0, 1, c, and a> and has series
solutions expanded about these singular points.

Linearly independent particular solutions of (3) expanded about z = sn2u - 0 are as
follows:

oo

Up(k, sn2u) = snu ^ Cjsn2Ju, (6)
J-0

Vp(k, sn2u) = £ Cjsn2tu, j = 0, 1, 2, • • • (7)
7-0

where p2 = a. Particular solutions of (4) expanded about z = dn2v = 1 are as follows:

oo

Upt(l/k, dn2v) = ^ Cj(dn2v - iy , (8)
j=0

CO

VP'(\/k, dn2v) = Up,(\/k, dn2v) In (1 - dn2v) + ^ dj( 1 _ dn2v)J, (9)
J-0

where p' = p/k. The coefficients Cj and dj are determined uniquely in terms of r (the roots
of the indicial equation), k (0 < k < 1), and a for the expansion points and they are
evaluated by computer. For simplicity, (6), (7), (8) and (9) are abbreviated to Up(u), Vp(u),
Up'(v) and Vp'(v), respectively.

The general solution of (3) is the linear combination of the two particular solutions
Up(u) and Vp(u):

M(u) = AUp(u) + BVp(u), (10)

and similarly for (4):

N(v) = CUp'(v) + DVp'(v), (11)

where A, B, C and D are arbitrary constants.
When the potential is maintained as

<t> = ±V at u = ± u0, (12a)

<t> = 0 at u = 0, (12b)
4> must be an odd function of u. In order to exclude Up(u) which is an even function of u, B
must be zero. The potential must be bounded. Since Vp>(v) includes In (0), D must be zero
in order to exclude VP'(v). Hence, we assume the solution to be as follows:

* = A1/2 i An UPn,(v), n = 0,1,2, (13)
j-o Upn(Uo)

where An should be determined so to satisfy necessary boundary conditions. To obtain
An , we utilize the orthogonality of the function UPn,(v).
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Considering a set of UPni(v) which is orthogonal with respect to weighting function r(v)
on the interval [0, A-'], we have

/•"' UPAv)rjv) , rK' UPn'(v)r(v)
J0 (1 - dn2u0sn2v)1/2 V J0 (1 - dn2u0sn2v)V2 V

An = — = , (14)
/ [UPn,{v)fr{v)dv \\UPAv)\\1/2J 0 n

where || UPn,{v)||2 is the weighted norm of the form

l|t/P»ll2= [K'lUPn,(v)fr(u)dv. (15)
J 0

The weighting function r(u) will be given in Sec. 3.

3. Determination of eigenvalues. It is necessary to determine the eigenvalues and
eigenfunctions for (3) or (4). An advanced problem for the determination of eigenvalues
appears in the case of bispherical coordinates. In this problem, eigenvalues are determined
under the boundary conditions that the solutions should be bounded at the ends of the
interval x[-\, 1 ] or 6[tt, 0] which are the regular singular points; they are given by A„ = n(n
+ 1), n = 0, 1, 2, • • ■ (integers) [3], The corresponding eigenfunctions are Legendre
polynomials Pn(x) = Pn{cos 9). If n is not an integer, the solutions are not eigenfunctions
and diverge at x= -1.

We proceed as follows. The Legendre equation is replaced by the Heine equation (4).
We take z = dn2v in place of x = cos 6, and UPni(v) and UPn(u) in place of Pn (cos 6) and sin
h[(n + i)r;], respectively. We must determine the eigenvalues in the space between the two
conductors in bi-cyclide coordinates. They are obtained in the same manner as in the
solution of the Sturm-Liouville eigenvalue problem.

The general form of the second-order Sturm-Liouville problem consists of a differen-
tial equation

d_
dv p(v) t + + MtOlv = 0, (16)

on the interval a < u < b, together with the boundary conditions

aj<a) + a^y'ia) = 0, (17)

Mb) + = 0 (18)
at the endpoints.

Let A„ (n = 0, 1, 2, ■ • •) be the eigenvalues and yn the eigenfunctions which build up
orthogonal series on the interval [a, b] with respect to the weighting function r(u). If

\\p(v)yy'\\a = 0 (19)

holds, then the eigenvalues and the eigenfunctions are given by

/ \p(v)yn'2 + q(v)yn2] dv
K = — • (20)

. b
r(u)yn2dvJJ a
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The values of \n and yn that satisfy (20) are calculated by an iterative process, though this
is tedious.

Eq. (4) can be expressed in Sturm-Liouville form as

d ( dN\^ ysnv cnv —j^j - (2 dn2v + a) snv cnv N = 0. (21)

Comparison of (16) and (21) gives the following relation:

y = N(v), p(v) = snv cnv, q(v) = 2 snv cnv dn2v, r(v) = snv cnv, X = -a. (22)

Let the boundary conditions be

N(v) = 1, N'(v) = 0 at v = 0, N(v) bounded, N'(v) = 0 at v = K'\ (23)

then (19) holds and (20) becomes

f snv cnv (Nn12 — 2 dn2vNn2)dv
\n= -  . (24)

. K'

/' K '
snv cnv Nn2 dv

0

The eigenvalues and eigenfunctions which satisfy (24) are computed. Examples of them
are shown in Fig. 2. Another method is to calculate the eigenvalues by the Rayleigh-Ritz
variational method and then obtain UPn,(v) from (8). The eigenvalues calculated by the
Rayleigh-Ritz method agree closely with those obtained by the iterative method.

4. Expression for capacity. Let t be the dielectric constant of the medium, E be the
electric field intensity over the surface of the electrode and d\ be an element of area. Then
the total charge Q over the electrode is given by

Q = [ tEdA. (25)
J s

1.457000 A3 35.90997
7.199171 X4 58.87860

18.68349

Fig. 2. Heine eigenfunctions UPn,(v).
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Division of (25) by 2V gives the capacity C and division of the capacity by a gives the
normalized capacity

£_ 0- I eEdA
s

a 2a V 2a V
In the axisymmetric case

a2!]2 a2

A2 ' g33~ \

Substitution of (27), (28) and (29) into (26) gives

C _ irt
~a ~ ~V

From (13), we have

CO

= k2snu2cnu2dnu2sn2v(\ - dn2UoSn2v)~1'2 ^ dnUPr;(v)
dip
~du

where

(26)

E = -grad*-- A(a„|£ + a,|f), (27)
where au and a„ are unit vectors, and

dA = au(g22g33dv d\p)U2, (28)

where g22, g33 are metric coefficients given by [1]:

#22 = TT ' i»» = TT cn2 udn2usn2vcn2v. (29)

/ (x 'ft/ Cnu dnu vnc cnvj u-u„dv. (30)

+ (1 - dn2u0sn2vY'2 £ An t/Pn'(iO, (31)
n=0 UPn\u o)

3
Vpn'(Uo) = Upn(u)\ u = u„ ■

Substitution of (31) into (30) gives

C 7rt cnu0dnu0 y, CK' snv cnv
a ~ V h, Jo (1 - dn2u0sn2v)1/2 P"'(V)

k2snu0cnu0dnu0sn2v UPn,(u0) 1
1 — dn2u0sn2v + UPn(u0)l ' ( '

where An is given by (14).
The approximate values of C/a calculated by (32) are listed in Table 1, where u0/K

relates the shape of the electrodes and Cn/a denotes a partially normalized capacity
corresponding to n. The contribution of CJa to C/a is dominantly large and the contribu-
tions of Ci/a, C2/a, ■ ■ ■ are very small. This property is more remarkable when the values
of uJK and k are larger. The approximate values previously obtained [4] agree with the
values evaluated by this exact method (within reasonable error). The relation of C/a to
uJK is shown for the parameters k2 = 0.1, 0.3, • • ■ 0.9 in Fig. 3.
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Table 1. Normalized capacity, k2 = 0.1, e = 8.8552 X I0~12 [F/m],

C/a[F/m]
uJK n CJa[F/m\ C/a[F/m) (Ref. [4]

0.1 0 933.9 X10"12 X 10"12 X 10~12
1 276.6
2 129.7
3 72.9
4 44.3
5 28.0
6 18.1
7 11.9
8 7.6
9 4.6 1527.2 1523.4

0.5 0 115.65
1 12.97
2 1.66
3 0.23 130.52 128.05

0.9 0 27.601
1 1.416
2 0.123
3 0.022 29.162 29.350

Fig. 3. Normalized capacity.
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5. Concluding remarks. The main theme of this paper has been the numerical calcu-
lation of Heine functions and the capacity between two electrodes ±u0 in bi-cyclide
coordinates. The eigenvalues and eigenfunctions are not represented in simple functional
relation as for Legendre polynomials, and their evaluation is possible with a huge amount
of computation. While electrostatic problems in the case of bispherical coordinates are
solved, problems in bi-cyclide coordinates have not been clarified because of the com-
plexity of Heine functions. In solving the boundary-value problem for Heine differential
equations, an electrostatic problem has been solved and the capacity is evaluated. This
paper presents a new contribution to the hitherto unknown field of special functions,
eigenvalue problems and engineering applications, though the problem belongs to classic
mathematics.

The computation was carried out by the double precision method, restricting the
maximum numbers of terms to 200 by use of Facom 270-30 computer.
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