QUARTERLY OF APPLIED MATHEMATICS 203
JuLy, 1977

SINGULAR PERTURBATION ANALYSIS OF THE SCATTERING OF
RAYLEIGH WAVES BY THIN SURFACE LAYERS*

BY
D. A. SIMONS

Brown University

Introduction. Surface waves progagating in elastic or piezoelectric half-spaces will be
scattered upon interaction with thinly plated, finite or semi-infinite surface regions. At
large distances from the scatterer along the surface, reflected and transmitted surface
waves will appear. The remainder of the field after subtraction of all the surface waves is
known as the radiated wave. In plane strain, the surface waves decay exponentially with
depth but do not decay with distance along the surface, while the radiated wave decays as
r~Y% along any ray, and as r~¥? along the surface. The power flux associated with the
incident wave will be partitioned among the reflected, transmitted, and radiated waves.

Numerous analyses of such interactions have appeared [1-7]. A common feature
among all of these is the representation of the surface layer by a set of boundary
conditions [8] to be applied to fields in the substrate. (These boundary conditions are
accurate to within terms of order (layer thickness)/(wavelength).) The resulting boundary
value problems have been solved by various methods. The Wiener-Hopf technique is
useful in some very special cases with semi-infinite layers [1-3] but even here usually leads
to integrals which can be evaluated only numerically. A variational approach [4-5] and
various related modal expansion techniques [6] are more widely applicable and have
proven successful for many applications, but have not given any insight into the radiated
wave, as they incorporate an assumed field consisting only of surface waves. A direct,
approximate, numerical solution has been obtained for a single strip [7], but the numerical
analysis is exceedingly complex. Nevertheless, that study suggests that the power flux in
the radiated wave may in some instances exceed that in the reflected surface wave.

Thus, in spite of this proliferation of existing approaches, it would still seem useful to
devise a method which is capable of treating finite and semi-infinite layers, elastic and
piezoelectric substrates, inertial and stiffening effects of the layer, plane and non-plane
problems; which accounts for body waves as well as surface waves, and which leads to
simple expressions for the scattered field. The purpose of this paper is to present, by way of
example, a singular perturbation approach to this class of problems—an approach which
appears to possess the attributes listed above. The problem treated in detail is the
scattering of a Rayleigh wave by a finite, thin strip. In order not to obscure the fundamen-
tal concepts, the density of the layer is taken to vanish, but this restriction is not essential
to the success of the method. The problem is formulated in terms of a singular integral
equation governing the shearing traction between the strip and the substrate. A parameter
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¢, proportional to the ratio of layer thickness to incident wavelength, appears explicitly,
and an expansion of the solution about ¢ = 0 is sought. Boundary layers near the edges of
the strip are identified, and inner and outer expansions are postulated in the usual way.
Closed-form expressions are obtained for the first term of the outer expansion, and for
certain integrals of the inner expansion. These in turn are sufficient to determine closed-
form expressions for the transmitted and reflected surface waves accurate to order e.

Formulation of the problem. Consider an isotropic elastic half-space —o < (x, y) <
o, z > 0, with Lamé parameters A and ¢ and density p. A strip of thickness 24" and Lamé
parameters A', u' is bonded to the surfacez = 0,0 < x </, —o < y < o, The density p' of
the strip is assumed to vanish. Plane strain is assumed to obtain, i.e., the displacement in
the y-direction vanishes and all field quantities depend only on x and z. Only harmonic
waves with time dependence exp (—iwt), w > 0, are considered; hereafter the time-factor is
dropped and fields are in general taken to be complex.

The boundary conditions are [4, 8]

006, 0) = 0,(x,0) = 0 (—0 < x<0, [<x<®), (1)
o.(x, 0) + (ﬂf/ks)ux,xx(x» O) =0.(x,0)=0 0<x< l), (2)
Ue, (0%, 0) = uyx(/7,0) = 0, (3)

where o,,(x, z) are the components of Cauchy stress, u,(x, z) is the x-displacement, ¢ =
8h'ks(u'/u)N + u')/ (N + 2u'), ks = w/cs, ¢s = (u/p)*?, and a subscript comma denotes
differentiation. Egs. (1) represent the vanishing of surface traction on the unplated surface
of the half-space; Egs. (2), the interaction of the strip with the half-space; and Egs. (3), the
vanishing of traction on the edges of the strip.

The surface x-displacement in the incident Rayleigh wave is

u'"(x, 0) = uy exp (ikgx) 4)
where kg is the positive root of the equation
R(k) = (2«* — ks*)* — 4k’ny(x)Ina(x) = 0. (%)

Here n,(x) = (k* — k)%, v =d, s; kg = w/cq, ca = [(A + 2u)/p]"%. The wave numbers
and phase velocities &, , ¢s , kg , cq are appropriate to plane shear and dilatational waves in
unbounded elastic media; the Rayleigh wave propagates along the surface in the positive
x-direction with speed cg = w/kg (< ¢; < ¢;) while decaying exponentially with depth [9].
The associated tractions vanish on the surface z = 0, i.e.,

O'xzm(xa O) = o'zzm(xs 0) = 0. (6)
Now let the scattered field be defined as the difference between the total field and the

incident wave, and denoted with a superscript (s). If £,(x) is the shear traction between the
strip and the substrate, then in view of Eq. (6),

1:(x) = 0:(x, 0) = 04,'"(x, 0). (7)
Egs. (1-4, 6-7) then lead to the following boundary conditions for the scattered field:
0:2(x, 0) = 6,,(x,0) =0 (—2 < x <0, I <x < x), (8)

te(x) + (ue/kg)uy ' (x, 0) — tokp®(ue/ks) exp (ikrx) = 0,."(x, 0) = 0 (0 < x < [,
9)
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Uy, (0%, 0) + ikpuy = u, (I, 0) + ikgu, exp (ikgrl) = 0. (10)
The displacement u,'®'(x, 0) may be represented by the superposition integral
w0 = [ 6@Gut - Bl (co<x< o), (an
where [10]
Gea(x) = (1/2m) [ [hno)/ R exp (i) . (12)

The integration contour in Eq. (12) must be indented (in the complex k-plane) above the
branch points at —k,; , —k, , and the pole at —k , and below the branch points at k; , k, ,
and the pole at k , and the multivalued functions ny(x), ns(x) taken as positive when x >
ks .

The Green’s function G..(x) is the surface x-displacement due to a surface shearing
traction 6(x) (where 6(x) is the Dirac delta function), and accordingly, along with its
associated z-displacement and stresses, satisfies all the field equations of dynamic elasticity
and propagates outward from the origin. The latter two facts apply as well to the
superposition given by Eq. (11). Further, because the Green’s state is free of surface
shearing traction away from the source point, and free of normal traction over the entire
surface, Egs. (8) and the second of Egs. (9) are satisfied automatically so it only remains to
determine ,(x), 0 < x </, in accord with Eq. (10) and the first of Egs. (9).

By replacing x by £ in the first of Egs. (9), multiplying by sgn(x — £) (where sgn (x) = 1
if x >0, —1if x <0), integrating from 0 to /, and employing Eqs. (10-11), there results

[0+ 2o n -0 @

= - Wexp (ikex)  (0<x<1), (13)
where G, .(x) is obtained from Eq. (12) by dividing the integrand by ix. This function will
have a Cauchy singularity at the origin, so the integral in Eq. (13) must be interpreted in
the sense of Cauchy’s principal value. By directly integrating the first of Egs. (9) from 0 to
/, and using Eq. (10), there results

[o 1(£) dE = 0. (14)

Eq. (13) may be regarded as a singular integral equation governing ,(x) and Eq. (14)
as an auxiliary condition. Recall that ,(x) is a shear stress, so it may possess integrable
singularities of the form r=?, p < 1 at x = 0*, /=, without causing the strain energy to
become unbounded. Muskhelishvili’s general theory [11], when applied to this case,
guarantees that Eqs. (13-14) do in fact uniquely determine ¢,(x).

These and all subsequently appearing equations may be non-dimensionalized by the
transformations

)-C=xks; éz‘fks; kR=kR/ks; 7=[ks;

;x()_‘) = tx(x)/(ﬂuoks); Gxx.x(-’.() = (IJ'/ks)Gxx.x(x);
k/ks; &) = n,k)/ks, ky=kyks, v =d,5(s0ks=1)
R(&) = R() /ks*;  #'9(x, 0) = u!”(x, 0)/uq ,

=i
1
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after which the overbars are suppressed for convenience. The dimensionless form of Egs.
(13-14) are thus

fl (E)[sgn (x — &) + 2€Gry(x — E)] dE = —2eiky exp (ikgx) O<x<h (15

fo 1(£) dE = 0, (16)

Singular perturbation analysis. The parameter ¢, defined following Eq. (3), is a
product of elastic constants and h'k, = (2h'/Ag)(ks/kr)w, where A = 2w /kg is the incident
wavelength. Because k,/kr also depends only on elastic constants (cf. Eq. (5)), ¢ is a
measure of layer thickness relative to incident wavelength, and in many applications of
interest will be extremely small. Furthermore, the representation of the surface layer by
boundary condition (2) is accurate only to order 2A'/Ag [8]. Thus a perturbation analysis
of Egs. (15-16), accurate to order e, is justified.

As with most analyses of this type, a certain amount of trial and error is involved in
ascertaining the correct transformations and expansions, so some of the following steps
may at first appear unmotivated. However, some reflection will reveal that the transforma-
tions and expansions postulated below are the only ones which permit Egs. (15-16) to be
satisfied to order e.

The outer limit process is simply ¢ — 0 with x fixed. Boundary layers will exist near
both ends of the interval (0, /), corresponding respectively to the inner limit processes ¢ — 0
with X = x/e > 0 fixed; and e— 0 with X = (x — /)/e < 0 fixed. Thus it is assumed that ¢,
has the following expansions:

t(x; €) = ety)(x) + o(e) (e — 0, x fixed), (17)
t(x; €) = (%) + o(1) (e = 0, X = x/e fixed), (18)
t(x; €) = 1(%) + o(1) (e = 0, x = [x — []/e fixed). (19)

Now suppose the interval of integration (0, /) is partitioned into three subintervals by
the points €2, | — €'/2. Substitution of (17-19) into (15-16), followed by changes of
variable £ = ¢£/¢ in (0, €?), and £ = (¢ — [)/e in (I — €2, ]), yields

(—1/2

€ fo [f(8) + o(D)]lsgn (£ — &) + B/(£ — &) + 2¢G'(eX — €£)] dE

[ Len® + o(©lsn (x — )+ B/(x — £) + 2G'(x — D) &k

e [* i + o(ilsgn (2 — B) + B/F — B+ 2G5 — b)) b

= —2eikpexp (tkpx)  (0< x <), (20)

1/2

¢ —el?
ffo [1(8) + o(1)] dE + f [et(£) + o(e)] dE

ve | t®+ond =0, 1)
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where X = x/e, X = (x — )/e, 8 = 1/[x(1 — k4*/ks?)], and G'(x) = Gy x(x) — B/2x. The
Cauchy singularity has been separated out of the kernel G...(x) by performing an
asymptotic analysis of this function (as defined by the derivative of Eq. (12)) in the vicinity
of x = 0. The remainder, denoted G'(x), is bounded for —© < x < =™,

The outer solution, reflection and transmission coefficients. In the outer limit x is fixed,

€ - 0,% - o, and X —» —, After dividing by ¢ and performing the outer limit process,
Egs. (20-21) yield

fy + fl L(€)sgn (x — &) dt — [, = —2ikgpexp (ikex) (0< x <), (22)

1
i+ [ w@de+i,=o, (23)
[}
where
hd o ]
foEfo i&)dt, I,= f_m 1) dE. (24)
Eq. (22) is solved simply by differentiating it with respect to x, yielding
h(x) = kg? exp (tkgx) (0 < x < ). (25)

After substitution of (25) into (22-23), the latter two equations may be solved simultane-
ously for I, and I, , yielding

1, = —ikg, 1, = ikg exp (ikgl). (26)

Thus it has been possible to determine the outer expansion of z,(x) to order ¢, as well as
the integrals 1, , I, of the zero-order inner expansions, by applying the outer limit process
to the governing singular integral equation (15) and the auxiliary condition (16). This
information alone will be sufficient to determine, through the superposition formula (11),
the complex amplitudes of the reflected and transmitted surface waves. Substitution of
(12) into (11), interchange of the sequence of integrations, and non-dimensionalization as
before, yield

1L [7 ns , !
u,'(x,0) = o '11?8:)) exp (ikx) ':fo t.(§) exp (—ik) dg:’ dx (—» <x< @) (27)

For x < 0 the outer integration contour in Eq. (27) may be closed by large arcs in the
lower half k-plane and loops about the branch cuts emanating into the third quadrant
fromx = —k, and —k,. Recall that the original contour was indented above the pole at x =
—kg, so application of Jordan’s Lemma and the residue theorem yields

(s) _ 1 s _kR . ! .
u%(x,0) = — wé—;‘;(ﬁ—;exp (—ikgx) fo (&) exp (ikg&) dt

+ BLIL (- <x<0), (28)

where B.L.I. denotes the branch line integrals. These may be shown by Watson’s Lemma
to decay as | x| %2 as x — — o, so the first term of the right-hand side of Eq. (28) represents
the reflected surface wave, a negatively propagating Rayleigh wave. Its complex amplitude
(i.e., the coefficient of exp (—ikgx)), is denoted 4, and referred to as the reflection
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coefficient. The integral appearing in Eq. (28) may be evaluated by the same partitioning
and expansions as were employed previously, i.e.,

e—1/2

!
[ &) expikntrds = e[ 1E) + o1)] exp (ke )

0

[0 1) + o)) exp (k) d +

‘f _0 0@ + o(D)] exp (ika(ek + D) dE. (29)

Substitution of Egs. (24-26) into (29) yields
f 'zx(g) exp (ikpt) dt = €[ly — (ikn/2)(exp (2ikgl) —1) + exp (ikal) [,] + o(¢)  (30)

= €(ikr/2)(exp (2ikgl) —1) + o(e),
so from Egs. (28, 30) the reflection coefficient is

_ ins(—“kR)
(dR/dx)| <= -rx

When x > [, the integration contour in Eq. (27) may be closed in the upper half «-
plane. The contribution from the pole at kg is a positively propagating Rayleigh wave and
may be evaluated analogously. When this is combined with the incident wave, the
transmission coefficient 4, , defined as the coefficient of exp (ikgx), is found to be

ikrlny(kr)
(dR/dK )l K=kRr

A, = [e(ikr/2)(exp (2ikgrl) —1) + o(e)]. (31

A, =1+ € + o(e). 32)

The inner solution. By employing the subsurface fields of the Green’s state in for-
mulas analogous to Eq. (11), it would now be possible to evaluate the scattered field at any
subsurface point of the half-space, accurate to order e. The inner expansions need not be
determined explicitly for this purpose, as only the integrals 1, , I, would appear, and these
have already been determined. However, a study of the inner expansions will elicit the
form and strength of the singularity in the shear traction f,(x) near the edges of the strip.
Further, an interesting parallel will be seen to exist between the inner expansion and a
related static problem.

Consider then, for example, an application of the left-hand inner limit process to Eq.
(20). In this limit ¥ = x/e is fixed, e — 0, x — 0, and X — — . Note that Egs. (24, 26) imply

f “i@) dE = —ikn . (33)

After division by e, application of the left-hand inner limit process, substitution from Eq.
(33), and some rearrangement, Eq. (20) yields

£ % RPN . A
[+ emf e/ -o1d = -ike  ©<i<o gy

Egs. (33-34) are very similar to those obtained by Koiter [11] governing static load
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transfer from a semi-infinite edge stiffener into a sheet in plane stress. Indeed, the
transformations

n = 4E(1 — k?/ks?), v = 4%(1 — kd’/k?),
(n) = 1)/ [~ 4ikr(l — ka*/k?)], (35)
when used in Egs. (33-34), yield

[y —@m[ ta/m-old—1=0 ©<v<e), @)

fmf(n)dn =1, (37)

which are precisely the equations solved by Koiter. He presents the following asymptotic
results:

P()/Py ~ 1 — (Qu/m)"* as v — 0%, (38)
P()/Py ~ 2/(wv) as v — ®, (39)
where
PO)/Py= [ (n) dn. (40)
Eq. (40) shows that 7(v) = —d[P/P,]/dv, so (u38-39) imply
7(v) ~ (2rv)~V? as v — 0, (41)
T(v) ~ 2/(rv?) as v — (42)

Substitution from (35) into (41) yields the singular form of the traction near the edge of
the strip:

to(X) = —2ikp[(1 — k4/ks?)/2nwx]"* as X — O. (43)

When Eq. (43) is written in terms of the outer variable x = €X, it is seen that the singularity
is of inverse square root type in x, with strength proportional to ¢'/2.

Analysis of the right-hand boundary layer would follow the same steps as those
employed here, and would lead to similar results.

Discussion. Several questions naturally arise with regard to the preceding analysis
and results. First, how could the lowest terms of both the inner and outer expansions of 7,
have been fully determined without recourse to any matching principle (e.g., [12])?
Furthermore, Eqgs. (17, 25) show that the one-term, left-hand inner expansion of the one-
term outer expansion e#,(x) is just ekg? while Egs. (18, 35, 42) show that the one-term
outer expansion of the one-term, left-hand inner expansion (%) is proportional to €2/x2.
How can the solution be correct in view of this apparent contradiction of Van Dyke’s
matching principle?

In answer to the first, it should be noted that the necessity of applying a matching
principle arises when problems are formulated in terms of differential equations which are
solved successively in various adjacent, overlapping domains. Because the present ap-
proach begins with an integral equation whose domain spans both the inner and outer
regions, such a need does not arise.
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To answer satisfactorily the second question, or to generalize the circumstances under
which matching need not apply, would require a fuller theoretical basis than is now
available. It may be noted, however, that the matching principle is satisfied by the stresses
in the interior of the two-dimensional domain —o < x < ®, 0 < z < o, and by the
displacements in the closure of this domain. (An example will be given presently.) Among
these field quantities it is only the shear stress o,, which fails to satisfy the matching
principle, and it is only on the layer-substrate interface, near the edges, that it does so. But
this is precisely the surface on which the non-classical boundary condition (9) and the
related edge condition (10) obtain. The fact that (9) enforces a linear relationship between
t, and the second derivative of a displacement is undoubtedly behind the failure of the
derived expansions of ¢, to satisfy the matching condition.

Now it will be shown that the inner and outer expansions of u,'®’ do satisfy the
matching condition. (Similar manipulations would confirm the matching of the vertical
displacement and the stresses in the regions just mentioned.) When the subdivision and
variable changes of (20-21) are used in (11), and G,,(x — &) is replaced by its subsurface
extension G, (x — £, z), there results

e—1/2

w0 2) = ¢ UE) + o()IGuntx — ek 2)
o ) + oOGunlx - £.2) de

+ 6f0 Jz[[o(é) + o()]Grr(x — [ — eg, z)dg' (44)

—€

Application of the outer limit process to (44), and substitution from (24), yield

ux‘S\(X, Z) ~ f[ionx(X, Z) + flll(E)GxX(X - 5’ Z) df

+ [,Gox(x — 1, 2)] (e -0, X, z fixed). (45)

This is the one-term outer expansion of u,'® and consists of line-load fields of strength
el,, eI, emanating respectively from x = 0, z = 0 and x = /, z = 0, combined with a
superposition integral. Its one-term left-hand inner expansion is obtained by letting e — 0
with X = x/e, 2 = z/e fixed. Due to the logarithmic singularity at the origin of the line-load
horizontal displacement field, only the first term of (45) contributes, giving

uy'*'(x, z) ~ 1o(8/2)e log e. (46)

The one-term left-hand inner expansion of u,'s' results from application of the left-
hand inner limit process to (44). Again the first term dominates, and the limit process
yields an expression identical to (46). The outer expansion of this clearly satisfies the
matching principle.

It should be noted from the foregoing that both the left- and right-hand inner
expansions of 7, as well as the outer expansion contribute to the outer expansion of u,'®,
while only 2, , through 1, , enters the lowest order term of the left-hand inner expansion of
u,'". In other words, it is not true that the three terms on the right-hand side of (44)
determine respectively the lowest order left-hand, outer, and right-hand expansions of

(8)
U,
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If the individual contributions of the three terms of (45) to the reflection coefficient 4,
are computed, they are found to be proportional respectively to the three terms in (30). It
is curious to note that the first and third of these, which come from the boundary layers,
serve only to reverse the sign of the second, which comes from the outer region.

The reflection coefficient 4, for a semi-infinite surface layer (covering 0 < x < ®) may
easily be inferred from Eq. (31) to first order. The reflection from the strip may be
considered as a sum of independent reflections from the two edges at x = 0 and x = /. The
portion of A, which is independent of / then must represent the reflection from the leading
edge (at x = 0), so from Eq. (31),

_ ekrns(—kr)
2(dR/dK)| « - _ kg

This formula may be checked with an existing solution for reflection by a semi-infinite
layer obtained by the Wiener-Hopf technique [3]. That analysis employed the same
boundary condition as was used here, but obtained a solution of the resulting equations
valid for arbitrary e. When it is noted that the reflection coefficient 4, for x-displacement is
the negative of the reflection coefficient for the potential used in [3], the results may be
shown to agree to order ¢ as e — O,

When a similar check is made of the result of Yoneyama and Nishida [12] for the same
problem, it may be shown that when the layer’s density vanishes, their formula for 4,
differs in sign from the present one. That analysis seems to take no explicit account of the
edge condition [the first of Egs. (3)], and in view of the earlier comments regarding the
contributions of the inner expansions to A4,, the discrepancy is not surprising.

Aps = + o(e).
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