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-NOTES-

STRONG ELLIPTICITY AND VAN HOVE'S LEMMA IN INHOMOGENEOUS
MEDIA*

by HOMER F. WALKER (University of Houston)

1. Introduction. Let D be a bounded regular space domain, and let C be a fourth-
order tensor-valued function on D with coefficients Cim in C\D). If the coefficients CtJkl
are regarded as elasticities, then a sufficient condition for uniqueness of solutions of the
elastostatic displacement boundary-value problem in D is the existence of a positive
constant c for which the inequality

[ CimvtJvk,i dV > c f |Vv| 2dV (1)
J D J D

holds for all v £ H0\D). (In this expression, vu denotes the derivative of the z'th
component of the vector v with respect to Xj . Summation convention is used throughout
this note.) Such an inequality is easily obtained by assuming that the coefficients CiJM are
such that there exists a positive constant c0 for which

Cijkiix)%i£ki Cf£i£ij (2)

for every tensor and every x in D (see, for example, Fichera [2] or Knops and Payne
[3]).

A weaker assumption than the inequality (2) is the assumption that C is uniformly
strongly elliptic, i.e., that there exists a constant cx for which

Ci/3ja1 > c, |a|2 |/3|2 (3)

for all vectors a and 0 and all x in D. If the major symmetry condition CiJM - CKUJ is
satisfied, then Wheeler [5] has shown that (3) implies uniqueness of solutions of the
elastodynamic displacement boundary-value problem. However, Edelstein and Fosdick
[1] have shown by example that uniform strong ellipticity alone is not sufficient in general
to guarantee uniqueness for the elastostatic displacement boundary-value problem, al-
though uniqueness can be regained in certain circumstances with a few additional assump-
tions [3].

Suppose that the elastic medium is homogeneous, i.e. that the elasticities CijM are
independent of x in D. Then one can establish without difficulty the following lemma [3],

Van Hove's Lemma: If Q is uniformly strongly elliptic, then an inequality of the
form (1) holds for all v £ H0l(D).

* Received August 13, 1976; revised version received October 30, 1976, The author wishes to express his
gratitude to his colleague Lewis Wheeler for his valuable comments on the material of this note.
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It follows from this lemma that, in a homogeneous medium, uniform strong elliplicity
implies uniqueness for the elastostatic displacement boundary-value problem.

It is apparent that Van Hove's Lemma is not valid as stated if the coefficients Ctm are
allowed to vary arbitrarily in D. (Otherwise, uniform strong ellipticity would imply
uniqueness for the elastostatic displacement boundary-value problem in an arbitrary
inhomogeneous medium, contradicting the Edelstein-Fosdick example.) Out of both
mathematical curiosity and a desire to shed light on questions of uniqueness for the
elastostatic displacement boundary value problem, one is led to ask what becomes of Van
Hove's Lemma in an arbitrary inhomogeneous medium. In the following, we first show
that Van Hove's Lemma remains valid as stated, provided that the coefficients Cijki are
"nearly constant" in D in a certain sense. We then outline the construction of a set of
coefficients Cim which are such that no inequality of the form (1) can hold for all v £
H0\D). (Of course, such a set of coefficients can be recovered from the Edelstein-Fosdick
example. However, we feel that the direct construction given here better illustrates why the
algebraic condition of strong ellipticity fails in general to guarantee the analytic inequality
(1).) Finally, we offer a generalization of Van Hove's Lemma which is valid in in-
homogeneous media. Specifically, we show that if C is strongly elliptic in D, then it is
possible to salvage an inequality of the form (1) for functions v £ H0\D) which satisfy a
finite set of orthogonality conditions, the number of which does not increase under small
perturbations of C.

2. Van Hove's Lemma for tensors with "nearly constant" coefficients. In this section,
we show that an inequality of the form (1) holds for all v £ H0\D) provided G is
uniformly strongly elliptic in D and the coefficients Cim are "nearly constant" in a certain
sense. We take the following approach to this objective: Letting C° be a strongly elliptic
tensor with constant coefficients, we observe that if Q is sufficiently near C° in the usual
tensor norm, then not only is C strongly elliptic but also an inequality of the form (1)
holds for C on Ho(D).

Our desired result is a corollary of the following observation.

Lemma: If ClJki" are constants for which an inequality (1) holds with constant c and
if CiJki are functions on D, then, denoting by G and C° the respective tensors defined by
Cijki and ,

[ CtjkiVijVk,t dV> (c - sup |e - e°|) f | Vv|2 dV
J D D J D

for all v £ H0\D).

Proof: The inequality of the lemma follows immediately from the inequality (1) and
the expression

I CijkiVijVk,i dV — / [Cijki cim dV -t- / Cijki VijVkj dV.
J D J D J D

One sees that if the coefficients CiJM are sufficiently near the constant coefficients CiJk°
uniformly in D, then sup0 |C — C°| < c, and the lemma implies that an inequality (1) holds
for G with positive constant (c - supD |C - 6° |). It follows in turn from (1) that C is
uniformly strongly elliptic in D. We close this section by remarking that, since both the



NOTES 289

constant c and the quantity supD 10 — C° | are calculable, one may determine quantitative
limits within which the coefficients of C may vary while still preserving an inequality of the
form (1).

3. A counterexample. If the coefficients CiJki are allowed to vary without restriction
on D, then it may happen that no inequality of the form (1) can hold for all v G Hal(D),
even though 6 is uniformly strongly elliptic. Indeed, we now describe the construction of
coefficients Cim on D C R3 and a function v G H0\D) H C1'(Z))such that C is uniformly
strongly elliptic and

/ CtjkiVijVkj dV < 0.
J n

First, we define constant coefficients CiJki° as follows: Set
n o _ c 0 —*-1122 — *-2211 ~~
c 0 — /^ 0 _ /"• 0 — /^ 0 —*— 1212 — *-1221 — *-2121 — *—2112 — *">
n o — /^ o — ^ o _ o_/^ o_/^ o_/^*-1111 ~ *-1313 ~~ *-1331 ~~ *-2222 — *-3113 — *-2323 — *-233L

C 0 = 1*-3333

and take the remaining CtJki° to be 0. It is a straightforward matter to verify that there
exists a positive constant c for which

= ai2^2 + a22l322 + llaSPf + a^2]
+ («A + «3^02 + («20 3 + ot3/32f
+ a32032 > c |a|2 |/3|2

for all a and /?. Now for any v G H01(D), one calculates

Ctjki0vuv*,i = vUi2 - 4vlAv2,2 + v2,22 + 2[vU2 + u2>1]2

+ [fl,3 + ^3,l]2 + Ks + U3.2]2 + V3/.

If x is any point of D, then one can choose a particular v G H0\D) n Cl(D) which
vanishes on 8D and satisfies

^3,3 = ^2,3 ^3,2 ~ ^1,3 ^3,1 ~ ^1,2 ^2,1 = 0

U1,,2 - 4Vi,iV2i2 + V2,2 < 0

at x. It follows that CiJki0vtJvk,i < 0 not only at x but, by continuity, in some neighborhood
of positive radius 5 about x. For any e < 0, a continuous (scalar-valued) function can be
found such that

(i) v>e(x) > 0 for x G D,
(ii) ve(x) =1 for x G D satisfying |x — x| < 5/2,
(iii) <^(x) < e for xGc satisfying | x — x| >5.

If e > 0 is chosen sufficiently small and we define ClJki = ^eC^;0, then, for our particular v,

/ CimVijVj,k dV < 0.J D

4. A generalization of Van Hove's Lemma for inhomogeneous media. We complete
this discussion by offering a generalization of Van Hove's Lemma which is valid in
inhomogeneous media. Specifically, we show that if C is uniformly strongly elliptic in D
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and if an arbitrary complete orthonomal set in L2(D) is given, then an inequality of the
form (1) holds for all v £ H0l(D) which are orthogonal in L2(D) to a finite number of
members of this set. In addition, we observe that if C is perturbed slightly, then an
inequality of the form (1) continues to hold for the perturbed tensor and for all v £ H0\D)
which satisfy this same finite set of orthogonality conditions.

Let {<Pn\n = i,2,• be any complete orthonormal set in L2(D). For n = 1,2, • • •, define Sn
to be the span of {<?i , • • • , <pn) and let Snx denote the orthogonal complement of Sn in
L2(D). Let || ||o and || ||i denote the norms in L2(D) and H0\D), respectively. The
following is our generalization of Van Hove's Lemma.

Lemma: If G is uniformly strongly elliptic, then there exists a value of n for which an
inequality of the form (1) holds for all v £ H0\D) n Sn1.

Proof: It follows from the uniform strong ellipticity of C that there exist positive
constants c' and c" such that

c' [ | Vv|2 dV < c"|| v||02 + [ CimvuvkJ
J D J D

dV (4)

for every v £ H0\D). The inequality (4) is a special form of Garding's Inequality. A
derivation of (4) can be found in [5].

Now suppose that the lemma is false. Then for each positive integer n, one can find an
element vln) £ H0\D) H SnL such that ||v,n)||0 = 1 and

I Vv*"1!2 dV

The inequality (4) yields

f cimVl,rvk,rdv<\[ ij D n j o

'[ | Vv"11)2 dV <c" + — f | Vv(,l)|2 dV
J o n J o

and, for large n, one obtains

llv'il,2 < 1 + c"/(c" - £).

Thus the norms 11 v("'|| j are bounded.
It follows from the Rellich compactness theorem* that there exists a subsequence

{v(V};=1 i2i... of {v("'}n,li2i... which converges in L2(D) to an element v<0) £ L\D). Now v(0) is
the limit of a sequence which is eventually in Sn1 for every n; hence, v<0) £ Snl for every n.
Since {<?„}„,is complete, this implies v<0) = 0. But this is a contradiction since || v(o,||0 =
limy|| vl"y || o = 1, and the lemma is proved.

We conclude with the observation that, if an inequality of the form (1) holds for a
tensor C and all v £ H^D) H Snl, then for any other tensor C, one has

[ Cim'VijVk,idV> (c - sup |e - C'l) ( | Vv|2 dV
J D D J D

for all v £ H0\D) Pi Snl. The implication is that, if (1) holds on H0\D) n for a tensor

* This theorem states that bounded subsets of H0'(D) are relatively compact in L2(D). For a proof of a
general version of this theorem which uses Fourier transforms, see Lair [4],
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G, then a similar inequality holds on H0\D) p| Sn1 for all C which are sufficiently near C
that

sup 16 — e'| < c.
D

In other words, the set of orthogonality conditions sufficient to guarantee an inequality of
the form (1) does not suddenly increase for small perturbations ofC. Of course, this result,
together with Van Hove's Lemma, implies the result of Sec. 2 for tensors with "nearly
constant" coefficients. However, it should be noted that the result of Sec. 2 is given in
terms of calculable quantities, while this result is given in terms of "soft" constants and,
therefore, must be regarded as only qualitative in nature.

Addendum. We are grateful to the referee of this paper for observing that one can
obtain a "hard" version of the lemma of Sec. 4 for a particular complete orthonormal set
in L2{D) via the variational characterization of the clamped membrane eigenvalues. We
reproduce his comments below.

The clamped membrane eigenvalues are the successive minima of the Rayleigh
quotient

*(*)=( I v^|2 dv/M\0\
J D

defined for non-zero «.q (E H0l(D). Specifically, a monotone sequence {X„}„ „ li2. • • • of these
eigenvalues and the sequence of corresponding eigenfunctions {u„}„,1>2,... can be found as
follows: Setting u0 = 0 and S0 = {0} for convenience, define inductively, for n = 1, 2, • • • ,

\n = inf<,^H01(D)p|Sn_1'

u„ = any minimum of R(ip) in H0\D) H Sn-i1 having norm 1 in L2(D),
Sn = span of •

Clearly, Xj < X2 < • ■ ■ . In fact, it is known that all X„ are positive, that lim^oo X„ = oo,
and that {u„}n=lili... is a complete orthonormal set in L2(D).

For v £ H01(D) n Sn1, one has

|| v|102 < t-~— f | Vv|2 dV
An +1 J D

and thus, from the inequality (4),

f dV > c' f I Vv|2JD L A„+1J J D

Since suitable constants c' and c" can be found by direct calculation, it follows that,
whenever n is sufficiently large, an inequality of the form (1) holds with a positive,
calculable constant c for all v £ H0\D) n Snl.

References

[1] W. S. Edelstein and R. L. Fosdick, A note on non-uniqueness in linear elasticity theory, Z. angew. Math. Phys.
19, 906-912 (1968)

[2] G. Fichera, Lectures on differential systems and eigenvalue problems, Lecture Notes in Mathematics 8,
Springer-Verlag, New York, 1965



292 HOMER F. WALKER

[3] R. J. Knops and L. E. Payne, Uniqueness theorems in linear elasticity. Tracts in Natural Philosopy 19,
Springer-Verlag, New York, 1971

[4] A. V. Lair, A Rellich compactness theorem for sets offinite volume, Amer. Math. Monthly 83, 350-51 (1976)
[5] L. Wheeler, A uniqueness theorem for the displacement problem in finite elastodynamics, Arch. Rat. Mech.

Anal, (to appear)


