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Abstract. A theory which provides categorical classification and prediction of
flame configurations for multi-component mixtures consisting of N species has been
developed. The application of the theory of irreducible operators decouples the species
equations; and the fundamental solutions, if they exist, satisfy the same equations as
that of a binary mixture. The theory is applied to two flow configurations: first, the flame
at the mouth of a tube in a duct, and second, the flame in an unconfined jet. The single
mode flame structure is essentially the same as that of binary diffusion approximation
with proper modification of the effective diffusivity. The double mode structure consists
of two diffusion modes. The individual mode satisfies the diffusion equation with charac-
teristic effective diffusivity. The theory could be easily used by experiments and designers
for practical purposes such as correlating experimental data or estimating burner size.

1. Introduction. The aerothermochemical aspects of diffusion flames have been
extensively studied during the past few decades and are summarized in [1, 2], However,
in the majority of the above analytical investigations, the assumption has been made
that the diffusion of chemical species is a binary diffusion process. The celebrated work
of Burke and Schumann [3], among others, is a classical example. Burke and Schumann
presented a simple method of predicting the shape and height of the diffusion flame
using a linearized theory. Indeed, the results of their analysis agree well with some experi-
mental observations, yet there are many diffusion flames whose shape and height cannot
be predicted from their theories. Among other reasons, we conjecture that this may be
attributed to one of the basic assumptions made in their analysis, namely, that the binary
diffusion coefficients of each interdiffusion gas pair are the same.

In practice, the diffusion flames are controlled by complicated coupled diffusion
[4, 5, 6] of all the species present in the flame. Under a multi-diffusion process, the rate
of diffusion of each species is interrelated with that of the others. Hence, the overall
diffusional pattern, the rates of multi-step chemical reactions, locations of flames together
with velocity and temperature profiles predicted under the model of multi-diffusion are
different from what would be predicted by the binary diffusion approximation. Unfor-
tunately, the detailed physical processes and the physical consequences of multi-diffusion
processes in many reacting systems are not well understood to date.
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The purpose of the present paper is to develop a theory which provides categorical
classification and investigations of multi-diffusional flames consisting of N species, and
prediction of the flame configurations for these various classes of coupled diffusion flames.

It may be added that the major difficulties associated with multi-component systems
are the prediction of the overall fields which are governed by flow processes, chemical
reactions, and transparent processes. Various analytical procedures which permit simpler
mathematical treatment have been developed for a large class of reacting flow systems
within the binary diffusion approximation [1, 2]. An analytical procedure which would
simplify the prediction of the complete flow field for a multi-diffusing reacting system is
anticipated to be somewhat complicated and will not be presented in the present paper.
Nevertheless, the present analytical scheme incorporated with existing techniques
provides a simpler mathematical scheme and interesting physical insight into the com-
plete flow field of the reacting gas system. A detailed theoretical investigation which
addresses to the multi-diffusion flame stabilized in a reacting boundary layer is presently
being made and will be reported elsewhere in the future.

Within the flame sheet approximation [1, 2, 3, 7] the analysis, which is greatly
facilitated by the application of the theory of irreducible operators [8, 9, 10], reveals
that the multi-diffusion flames may be classified in two groups.

The first group includes those flames whose configurations are determined by A
fundamental modes (1 < A/ < N) which are described by diffusion equations of the
binary type. The flame configurations of the second group are determined, in general,
by coupled multi-diffusional modes described by homogeneous higher-order partial
differential equations. The order of the equations does not exceed 2(N — 1).

The physical parameters that determine the cetegory of a given multi-diffusional
flame are the diffusivity matrix and the stoichiometric coefficients of the gaseous mixture
composing the flame.

For example, in a flame composed of fuel, oxidizer, a combustion product, and an
inert gas, the flame configuration may be determined by one or two basic diffusion modes.
The actual number of basic diffusion modes depends on the conditions imposed on the
relations between the diffusivity matrix and stoichiometric coefficients. If the conditions
for the existence of fundamental modes cease to exist, the flame configuration must be
determined by higher-order diffusion equations.

The theory developed is applied to the multi-diffusion flame at the mouth of a tube
in a duct and to the flame of a laminar jet. For ternary and quarternary systems, formulas
for determining flame shape and height are obtained which could easily be used by
experimentalists and designers for correlating experimental data or estimating burner
size. The applications to other flow geometries are possible under the same assumptions.

2. Analysis. For a multi-component system of N species the steady-state species
equations are
pV‘in=w;_V'J,', 'i=1,2,"’,N (1)

where ), is the production term. If the chemical changes occur by a single reaction step

N N
veF + 0,0 + D vi/M, - X v/'M,, )
1=3

i=3

where F is the symbol for fuel, O is the symbol for oxydizer and A is the symbol for
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chemical species 7, then
wl = u/{(Vi” - V.'l)w, /l. = 1, 2, e ,N. (3)

The mass flux vector, J, , is given by Eq. (8.1-1) of [11, p. 516]. Assuming the thermal
diffusion, pressure diffusion and body force are negligible, we have

N-1
Ji= _PEDNVY;' 1=1,2,-..,N 4)
i=1

where

A

_w, > 0.:7s) 35 - ) ;
D,',' — .”_V (Di}\' — Dii) — W’(,; D,-I\’YK W:\, - IV, (O)

We note that D;; , which we shall call the modified multi-component diffusion coefficient,

depends on the mass fraction Y, collectively, i.e., through the molecular weight of the

mixture, W, and (Q_.,” D.Y,). One of the important differences between the mass

flux vector of multi-component systems, i.e. Eq. (4), and that of binary systems, i.e.

Fick’s law, is that Eq. (4) depends not only on the gradient of its own concentration

but also on the concentration gradient of other species and the corresponding diffusivities.
Substituting Eq. (4) into Eq. (1) and making use of the fact that

N

;K=L ©)
we have
VY, = \Z VoD, VYY) 4+ W — v, i=1,2 -, (N=1). @
For convenience, we introduce the following notations
1Y,
e Wi = w) if »'" —v #0, ®)
0, o wp, W =)

”.Wi(Vi” _ l/,'/)

where + sign for reactant, — sign for products, and

Zi= Vi/W, it — v = 0, ©)
_p W =)
Thus Eq. (7) becomes
N-1
pv-VZ;, = Z V- (pdi;VZ;) + 0w (10)
im1

where ¢; is —1 for reactant, +1 for products and 0 for inert gas. Egs. (10) are a coupled
system of (N — 1) equations. In general, one must either solve a 2 (N — 1)th-order
equation after elimination of other dependent variables, or to perform a matrix inversion
in order to obtain second derivatives of dependent variables, V*Z, , explicitly. Neither
of these procedures is a simple exercise, though they can be done in principle. However,
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a set of fundamental solutions governed by a system of uncoupled diffusion equations
can be obtained by the application of the so-called irreducible operator Chiu [8] has
developed. The method has been successfully applied to many coupled transport problems
[8, 9, 10]. We first apply the linear transformation of the dependent variables; i.e., let

Z = gau% (11)

where a isin general a (n — 1) X (n — 1) matrix containing (n — 1) X (n — 1) arbitrary
elements. Substituting Eq. (11) into Eq. (10), we have

pV-V(ay) = V-(pdV(@y) + 6v; (12)
multiplying Eq. (12) by the inverse of a from the left, we have
-V = V-(LVY) + go (13)
where
L = pla" da) (14)
and
g=a's. (15)

By a proper choice of a, Eq. (13) can be reduced to the following form in which 7 is
diagonalized:

ov-Vy. = Li.vz'//.‘ + g.w. (16)

The solutions ¢; (# = 1,2, --- |, N — 1) of Eq. (16) are called the fundamental mode of
the system.

Single mode flame structure. If the diffusivity matrix d is such that there exists a
matrix @ which satisfies the following conditions

(@ L,;=0j=1 (17)

(b) g.=0

(¢ viy=v.#0 and v»,; =0, 7 =>3

where v;; are the elements of inverse of @, then the fundamental mode, ¢, , is described
by a homogeneous second-order partial differential equation

V-V = L,V (18)
and
RO AT [ R 0 | 19)
Flame shape is determined by one fundamental mode ¢, :
¥i(r) =0 (20)
or
Ye(r)/Yo(t) Wo/We = ve'/vy. (21

Eq. (21) states the well-known fact that at flame sheet the ratio of number of moles
of the fuel to that of the oxidizer is exactly the stoichiometric ratio. This is the flame
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composed of a single mode. If we extend this idea, we would get the class of diffusion
flames that are composed of double and triple modes.

Double mode flame structures. If the diffusivity matrix is such that there exists a
matrix & which satisfies the following conditions

(a) L.‘i = L?.i+l = 0) .7 # 1
(C) Vij = Vo; = Oy ] Z 3:

then the fundamental modes, ¥, and ¢, , are described by second-order partial differential
equations:

pv-Vy, = Luvz'pl (23)
pV-VlI/z = Lzzvz‘l/z (24)

and flame shape is determined by two modes ¢, and ¢, . )
M fundamental mode flame structure, M < N — 1. If the diffusivity matrix d is
such that there exists a matrix @ which satisfies the following conditions

(a) L;=0 1 < M, i=2
(b) 9.=0 <M (26)
(c) V,','=0 ZS]'I, ]>Z‘[,
then
pV'le,' = L.‘,‘vzlp,' 7 S M (27)
and flame shape is determined by M fundamental modes ¢, , 7 =1,2, --- |, M:
2 Vi2 ot Vi Vi1 \01 Vi3 o im
S B S R @)
Yar Vu2: vt Vuu viek W¥ar Pzttt Vi

Thus, we have completed the formal theory of fundamental modes of flame structures.
Next, we shall illustrate the previous classification with the examples of binary, ternary,
and quaternary systems.

Binary system. The formal theory we have developed previously will be applied to
the simplest system of binary diffusion of two non-reacting gases, e.g. the binary diffusion
of two initially separated noble gases. In this case, the diffusion coefficients take the
following values

D“ = Dzz = 0 and D,z = Dg[ = D (29)

where D is the binary diffusion coefficient. Then, as one would expect, Eq. (17) reduces
to the equation of binary diffusion:

ov-VY, = —-V-(oD V Y) (30)
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Ternary system. The simplest nontrivial application of the theory is the diffusion
flame of a ternary system which composed of fuel, oxidizer and compustion product. In
that case, Eq. (2) takes the following form:

vl + v,0 — v, P. (31)

The combustion of hydrogen and oxygen at moderate pressure and temperature falls
on this category. Subscripts 1, 2, and 3 refer to, fuel, oxygen and product, respectively.
Thus Eq. (10) becomes

V-VZ = V- (0dV 21 + pd1sVZ) + o, (32)
pV'VZg = V'(pdglvzl + pd2gVZ2) + w. (33)

If the elements of the diffusivity matrix satisfy the following condition:

diy + diz = doy + dye (34)

=L

and the fundamental mode, ¢, , is governed by the following equation:

pV-Vl//, = p((l” _ dzl)vzlpl . (36)

then we can choose the matrix & as

>3]
[N

IJ (35)
1

(S

The configuration of the diffusion flame of a single mode can be calculated by solving the
algebraic solution of Eq. (20).

Quarternary system. From the practical point of view, the reactants of the combustion
are usually diluted initially with some noble gases or nitrogen, and the diffusion of
quaternary system arises. Letting subsecripts 1, 2, 3, and 4 denote fuel, oxidizer, product
and inert gases, respectively, we have the equations of the form of Eq. (10) with N = 4.

If the elements of the diffusivity matrix satisfy the following condition:

diz = (123, diy + diz = dy + da (37)

then we can choose the matrix & as

111
a=|—%11 (38)

001

and the fundamental mode, ¢, , exists:
V-V = p(din — di)) VY . (39)
If the elements of the diffusivity matrix satisfy the following conditions

diy + dyy — dis = dyy + doy — dog = dyz — dsy — dae (40)
dis # dy, (41)

then two fundamental modes, ¢, and ¢, , exist. The corresponding matrix a is chosen
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as follows:

1 1 1
a= |E, E. 1 42)
0 0 -1
where E, and E_ are the roots of the quadratic equation.
(dis + ds2)E® + (dyy — doy + dsy — ds2)E — (doy + ds)) = 0 (43)

The equations describing ¢, and ¢, are Eq. (23) and Eq. (24), respectively. The
corresponding L;, and L,, are

L, = (dyy + d2)E, — (d\; + ds)E_ + 2(dyy + dsy) (44)
Ly = (di + do)Es — (dor + dso)E- — 2(dyy + ds)) (45)

The flame shape is determined by
I—E) + (1 —E) =0 (46)

The features we have been discussing previously are typical of a system whose dif-
fusivities, stoichimetric coefficients and molecular weights satisfy certain conditions.
What about the systems which possess no fundamental modes? Such flames are ap-
parently more complex. In fact, the flame shape of such a system can be shown to be
governed by uncoupled higher-order differential equations. The order of such equations
depends on the diffusivity, the stoichimetric coefficients, and the molecular weights
and cannot exceed 2(N — 1).

3. Applications. We shall now apply the theory developed previously to different
flow geometries. The first problem is the flame at the mouth of a tube in a duct. Both
the axisymmetric and two-dimensional cases will be examined. The second problem
is the flame of an unconfined jet.

The flame at the mouth of a tube in a duct. The basic assumptions and the equations
describing the present problem are essentially the same as those adopted by Burke and
Schumman [3] except for the approximation of binary diffusion. The Burke and
Schumann problem is illustrated in Figure 1; fuel issues from a tube into a concentric
duct through which oxidizer is flowing. A flame is established at the mouth of the tub.
The flame height is required for the design of burners of this type.

Following (3], we assume the velocity is parallel to the axis of the tube everywhere,
the total mass flow in the z-direction is constant everywhere in the duct, the effective
diffusivity L., is constant throughout the duct, and the axial diffusion is negligible in
comparison with radial diffusion.

Under these assumptions, the single-mode equation for ternary systems, Eq. (36)
and quaternary systems, Eq. (39) become

o0 13<¢a_¢_1) _
L, 0z o or ") T 0 (47)

with initial conditions
ll/l = Yp,o/WFVF at 2z = O, 0 S r<a (48)
¥, = Yoo/Wwe at z =0, a<r<b (49)
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+z

|
Under-ventilated flame

I
Over-ventilated flame

Ye=Yeo | Yo=Yo,0
Fuel F oxidizer

Fic. 1. Diagram of the Burke-Schumann problem.

and boundary conditions
Y, /or = 0 at r=0b (50)
¢, = finite at r =0 (51)

where ¢ = 0 for two-dimensional and ¢ = 1 for axisymmetric flow. By the method of
separation of variables, it can be shown that for a cylindrical flame

‘ _ _Y!_r) _ Yn,o) g YI,..O _ 9< YF'() Yo,o)
‘l’l(’yz) - +<WFVF W()Vf) b WFVF - IVFVF W()VO

e ) L ]
X b "; ™ ']()2(“") J0<b Mn | €XP [ pvb2 Mon (52)

where J, and J, are Bessel functions of the first find (of order 0 and 1, respectively),
and g, represents successive roots of the equation J,(u) = 0 (with the ordering convention
Mo > o = 0). For a flat flame

Yio Yioa Yro 2 Yio

¢1(x’ Z) - _IVFVF W()V() b WFVF ™ WFVF

Yoo s~ 1. 9) ( f) l:___lﬂg 2 2:|
+ Wove ; o S (mr ) s i ) @R || = i (53)

The flame surface is determined by Eq. (20).
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The double mode structure for quaternary systems satisfies some equations as Eq.
(47) with initial conditions at z = 0,0 < r < a:

__—E Yy,

‘Pl - E+ had E_ WFVF (54)
. E+ YF' [V
‘pz - F - E WFVF ! (55)
atz=0,a <r<b

-1 Yo
wl E+ - E...W()Vo (56)
— _._I__,M, (57)

The solutions for ¥, and ¥, are of the same form as Eq. (52) and (53) with proper modifica-
tions of the initial conditions according to Eq. (54-57).

The flame of an unconfined jet. The first attempt at the theoretical treatment of the
problem is perhaps due to Fay (11). We shall follow Fay in the following analysis, except
for the assumptions of binary diffusion. The equation of motion of a laminar jet assuming
no pressure gradients or body force is, for two-dimensional and axially symmetric motion
respectively,

u o _ 9 a_u)
puax+pvay—6y(#ay, (58)
du, ou_19 au)
pv6x+pv6r_r67( ar (59)

The equations of fundamental modes are, for two-dimensional and axially symmetric
motion respectively,

i aw _ i( %)
9. 9y: _ 19 Y,
S + e oar 1 dr (L 6r> 1)

Under the condition that L,, = u it can readily be seen that a solution of the fundamental
modes, Eq. (3), are

¥i = B+ Cu (62)

where B and C are arbitrary constants determined by the boundary conditions.
For single-mode structure, we have

—_ _UG YF.e Yo,c _U_c_] 1 [ Yp YO]
wl B Uc - Ue I:WFVF 4 WoVo‘Ue ¥ Uc - Ue WFVF + WoVo “ (63)

where subscripts ¢, e refer to the value at the axis and ambient, respectively. The flame
surface is determined by Eq. (20). For fundamental modes other than single mode, the
condition that all L;; are equal to u reduces to the case of binary approximation. To
obtain the multi-diffusion effect, we have to abandon the condition. The resulting equation
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could only be solved numerically. However, if one is interested in the flame height only,
analytical solution is possible with some reasonable approximation. Near the axis of the
circular jet the velocity, according to the similar solution [12, 13], is

U. = (3/8m)(K/ux) (64)

where K is the momentum of the jet.

For an over-ventilated flame, the combustion is controlled by the diffusion of oxygen
toward the axis. Near the axis » is negligible and the second term on the left-hand side
of Eq. (61) can be dropped. The resulting equation becomes

3 K oy _ 12(.@_«)
SrvrL;; dx 1 o ! ar (65)

With initial conditions IEq. (54-57) and boundary conditions Eq. (50-51), the double-
mode solutions to Eq. (65) are

W= b= G ) [ o ()P ) de (66)

where ¢, . and ¢, , are Eq. (54-55) and Eq. (36-77), respectively. The radius is normal-
ized by the jet radius, and
_ é W”Zjii 2

& = 3K T (67)

At the axis, i.e., 7 = 0, Eq. (66) becomes

1
11’:' - ¢’i.e = (wf,c - ‘/’lc)[l - Oxp <_ZE—>] (68)
Substituting Eq. (68) into Eq. (46), we have the flame height.

4. Concluding remarks. A theory which predicts the shape of multi-component
diffusion flames has been developed. Applications have been made to Burke and Schumann
problems and laminar jet diffusion flame. For binary and quarternary systems formula
for predicting flame shape have worked out for both cylindrical and flat flames. These
formulas could be easily used by experimentalists and designers for correlating experi-
mental data or estimating burner size. The theory could be applied to other flow con-
figurations, e.g., the flame of droplet burning, the flame of a flat plate, the flame at a
stagnation point and flame of a counter jet. The theory could also be used for selecting
the proper diffusivities for the binary approximation, e.g., in comparing the binary
diffusivity of each pair with the proper effective diffusivity L, , the one which is closest
to I,, should be the pair of diffusivity.

REFERENCES

[1] 8. S. Penner, Chemistry problems in jet propulsion, Pergamon Press, New York, 1957

[2] F. A. Williams, Combustion theory, Addison-Wesley Inc., Palo Alto, 1965

[3] S. P. Burke, and T. E. W. Schumann, Ind. Eng. Chem. 20 992-1004 (1928)

[4] P. A. Libby and M. Pierucci, Laminar boundary layer with hydrogen injection including multi-
component diffusion, ATAA J. 2, 2118-2126 (1964)

[5] P. R. Nachtscheim, Multicomponent diffusion in chemically reacting laminar boundary layers, in




THEORY OF MULTI-DIFFUSION FLAMES 383

Proceedings of the 1967 Heat Transfer and Fluid Mechanics Institute, Stanford University Press,
pp. 78-87
[6] W. C. Davy, R. A. Craig and G. C. Lyle, An evolution of approzimations used in the analysis of
chemically reacting stagnation-point boundary layers with wall injection, in Proceedings of 1970 Heat
Transfer and Fluid Mechanics Institute, Stanford University Press
[7) T. M. Liu and P. A. Libby, Flame sheet model for stagnation point flows, Combustion Sci. Tech. 2,
377-388 (1971)
[8] H. H. Chiu, Theory of irreductble operator of linear system, Quart. Appl. Math. 27, 87-104 (1969)
[9] H. H., Chiu, Unsteady vaporization of liquid droplet, Quart. Appl. Math. 29, 421-437 (1971)
[10] M. Petrizzelli and H. H. Chiu, Transient vaporization of fuel liqguid droplet with thermal diffusion
characteristics, ATAA Preprint No. 71-126, 1971
(11] J. A. Fay, The distribution of concentration and temperature in a laminar jet diffusion flames, J.
Aeronaut. Sci., 681-689 (1954)

[12] A. Goldburg and S. 1. Cheng, A review of the fluid dynamic problem posed by the laminar jet diffusion
flame, Combustion and Flame, 9, pp. 259-272, 1965
[13] H. Schlichting, Boundary layer theory, 4th ed., McGraw-Hill Book Co., New York, 1960




