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1. Introduction. The determination of the stress field round a crack in an infinite
material has been the subject of a large number of studies during the last fifty years.
The assumption that the material is infinite is, in most practical situations, justified
by the fact that the crack is usually small compared with the dimensions of the material.
Hence the effect of the boundary of the material on the stress field round the crack will
be negligible provided the crack is sufficiently removed from the boundary. This assump-
tion is acceptable for a large class of anisotropic materials and hence, for example, the
solutions obtained by Stroh [1] and Clements [2, 3] for cracks in infinite anisotropic
materials will, in many cases, give relevant information about cracks in finite materials.
However, if the material exhibits "strong anisotropy" or, more specifically, is virtually
inextensible in a particular direction, then there may be a strong interaction between the
boundary and the crack even though the two may be far removed from each other. In
such cases the solution for the corresponding crack in an infinite material can give
misleading results and it therefore seems desirable to obtain some exact solutions for
crack problems in finite anisotropic materials. This is particularly the case in the light
of recent interest in fiber-reinforced materials since such materials are often considered
to be anisotropic in nature and to be almost inextensible in the fiber direction (see, for
example, England and Rogers [4] and Everstine and Pipkin [5]). Thus, in the present
paper, the problem of a crack in a strip of finite width and infinite length is considered.
The problem of determining the stress field and crack energy is reduced to a set of three
simultaneous Fredholm equations which may be solved numerically. Numerical values
for the crack energy are obtained for some particular transversely isotropic materials
and the results compared with those for the corresponding crack in an infinite material.

2. Statement of the problem and basic equations. Take Cartesian coordinates
Xi , x2 , x3 in a homogeneous anisotropic slab of elastic material occupying the region
between the planes x2 = ±h. In the plane x2 = 0 there exists a crack in the region
l^il < a, — co < x3 < co. The planes x2 = ±h are stress-free while the crack is opened
by equal and opposite tractions on each side of the crack. It is required to find the stress
distribution in the slab.

The necessary basic equations are derived in Clements [2], The expressions for the
displacements uk and stresses <r,, are

uk = 2<R £ Akaxa(?a), = 2«E £n«X«'(*.), (2-1), (2.2)
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where (R denotes the real part of a complex number, the x<*(z<*) (« = 1, 2, 3) are analytic
functions of the complex variable za = + rax2 and primes denote derivatives with
respect to the argument in question. Also, in (2.1) the Aka satisfy the equations

(c,l/rl + TaCi U2 + raCi2kl + Ta~Ci2k2)Aka = 0 (2.3)

where the convention of summing over a repeated Latin suffix is used and the ra are the
roots with positive imaginary part of the sextic equation

|c,in + TC,:it2 + TCi2ki + T~Ci2k2\ = 0, (2.4)

where the cijU are the elastic constants. Finally the Liia occurring in (2.2) are related
to the Ak„ bv the equation

Liia = (c,Jti + Taciik2)Aka . (2.5)

3. Solution of the problem. In order to satisfy the boundary conditions it is useful
to write the displacement and stress as the sum of three separate displacement and stress
fields. We write

(1) | (2) | (3) (1) | (2) | (3) /•> < ty o\Uk — U/c + uk + u/c , a a — a, j [ o" i j + (J a • (3. 1, 3.2)

Suitable forms for «*"' and uku> are obtained by referring to the work of Tauchert [6]
and Tauchert and Akoz [7]. For ukw and crii(v we substitute

Xa(sa) = 7T f VJp) cxp (ipza) dp (3.3)
— 7T ./ o

in (2.1) and (2.2) to obtain

uk" =-01 [ 22 AkaEa(p) exp (ipza) dp, (3.4)
T J 0 a

=-(R f 22 LiiaE„(p)ip exp (ipza) dp. (3.5)
7T Jq «

Similarly, for uk'z) and we substitute

X«(2«) = 7T f exP (—dV (3-6)
Z7T J 0

in (2.1) and (2.2) to obtain

w/t<2) = -(r[ 22 AkaFa(p) exp ( — ipza) dp, (3.7)
71" •' 0 a

<r,/2> = —-(R [ 22 L<iaFa(p)ip exp (—ipza) dp. (3.8)
7T Jo a

For uk and <r,-,<3> we consider the regions 0 < x2 < h and — h < x-2 < 0 separately.
For 0 < x2 < h the expressions for ukm and a-,/3' are

(3
uk

(3)
Vii

' = [ 22 AkaGa*{p) exp (ipza) dp, (3.9)
TT J 0 a

- (R f 22 LiiaGa+(p)ip exp (ipza) dp. (3.10)
7T J o a
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In — h < x2 <0 the corresponding expressions are

ukm =-(R f Yj AkaGa~(p) exp (—ipza) dp, (3.11)
T J 0 a

<r,,(3) = —-<%[ X LiiaGa~(p)ip exp (—ipza) dp. (3.12)
"7T Jo a

The stresses ai2 must be continuous across x2 = 0 and hence, from (3.2), (3.5), (3.8),
(3.10) and (3.12), it follows that

Ew?«+(p)= ZLt, aGa~(p). (3.13)
a a

Denoting these expressions by ^,(p), we obtain

Ga\p) = Maih(p), (3.14)

Ga~(p) = Maiii(p), (3.15)

where

£ Li2aMai = . (3.16)
a

From (3.9), (3.11), (3.14) and (3.15) it is apparent that the difference in displacement on
either side of the plane x2 = 0 is

Auk = - (R(Bki - Bki) [ \pt{p) exp (ipx,) dp, (3.17)
7T J o

where

Bki = £ AkaMai . (3.18)

The difference in displacement Auk outside the crack must be zero and hence, from (3.17)?

6\{Bki — Bki) f yf/jip) exp (ipx0 dp = 0 for l^l > a. (3.19)
J 0

From (3.5), (3.8), (3.10), (3.14) and (3.16) it follows that the stress boundary condition
on the crack faces will be satisfied if

1 r™
-<R / li,(p) + {L,2aEa(p) + Li2aF a(p)))ip exp (ipx,) dp = -Pi(x1)
T" Jo a

for \xy\ < a, (3.20)

where the Pj(xi) are the given surface tractions.
The final boundary condition concerns the requirement that the tractions be zero

on x2 = dzh. From (3.2), (3.5), (3.8), (3.10) and (3.12) it follows that this condition
will be satisfied if

[Li2a\Ea(p) + Ga+(p)} exp (ipTah) + Li2aFa(p) exp (ipfah)] = 0, (3.21)
a

£ [Li2aEa(p) exp (-iprji) + Li2a{Fa(p) + Ga'(p)} exp (-iprji)] = 0. (3.22)
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If we require the applied tractions Pj(x,) to be even functions of x, then it is sufficient
to put

ii(p) = i f r,-(t)J0(pt) dt, (3.23)
Jo

where the r,(t) (j = 1, 2, 3) are real functions to be determined and JQ is the Bessel
function of order zero. With this choice of the ^, (p) the condition (3.19) is automatically
satisfied. Furthermore, addition of the conjugate of (3.22) to (3.21) and use of (3.14),
(3.15) and (3.23) yield

E \Li2a[]'Ja(p) + Fa(p)] exp (iprji) + Ll2a[E«(p) + F«(p)} exp (ipfah)] = 0. (3.24)
a

It follows that

Ea(p) = —F a{p) (3.25)

and hence (3.20) reduces to

[ cos (px,)p dp [ rj(t)Jn(pt) dt + I T,k.(p) cos (px,)p dp I rk(t)J0(pt) dt
J 0 Jo Jo Jo

= irPj(x,) for |x,| < a, (3.26)

where Tik(p) is the real matrix defined by

TAp) = E L„aQak(p) + E L,2aQak(p). (3.27)

with Qak given by

E«(v) = Q«k(p)ik(p)- (3.28)

Numerical values of the elements of Qak for particular values of p may be obtained by
employing (3.14), (3.15), (3.21) and (3.22).

Now, by interchanging the order of integration in the first integral on the left-hand
side of (3.26), it follows that

[ 7 2'^ %r/2 + I Tik(p) cos (px,)p dp f rk(t)J0(pt) dt = irP^x,)
aXi J0 {Xi — t) J0 .'0

for 0 < Xi < a. (3.29)

Solving this Abel's equation for r,(t) and interchanging the order of integration in the
resulting triple integral, we obtain

r,(t) + t I Kik{s, t)rk(s) ds = 2t f , f2^72 for 0 < t < a, (3.30)
J( 1 Jo U J

where

Kik(s, t) = f Tik(p)J0(ps)J0(pt)p dp. (3.31)

Eqs. (3.30) constitute three simultaneous Fredholm integral equations for the r,(<),
i = i, 2, 3.
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4. The crack energy. The energy of the crack is given by the integral

U = | / Pk(x,) Auk dxt , (4.1)

where Aw* is given by (3.17). Using (3.23) in (3.17) and changing the order of integration,
we obtain

Am* = - i'(B*,- - .§*,) [ for 0 < x, < a. (4.2)
7T Jo (' )

Hence (4.1) yields

U = ~ (Bti - Bki) f" r,(t) dt £ (4.3)

In the case of constant applied tractions Pk(x,) = Pk (4.3) reduces to

U = | (Bki - Bki)Pk J° r,(<) dt. (4.4)

5. Numerical results. If we consider the case of constant applied tractions P,
and put t = at', s = as' and p = p'/a then (3.30) may be written in the form

r,(a<') + /' f Kik'(s', t')rk(as') ds' = art'P, for 0 < I' < 1,
^0

(5.1)

where

Kik'(s', V) = [ Tik{p'/a)J0(p's')J0(p't')p' dp'. (5.2)

Also, substituting t = at' in (4.4), we obtain

U = | (Bki - Bk,)Pka £ r,(at') dt'. (5.3)

In the particular case when the only applied traction is normal to the crack face, Pi =
P3 — 0 and (5.1) and (5.3) reduce to

[a-P2-V,(a<')] + t' f K,k'(s', t')[a'lP2-lrk{as')} ds' = wt' Si2 , (5.4)
J 0

U = | (B2i - B2,)P22a2 £ [ a-'Pf'r.iat')) dt'. (5.5)

In order to obtain some idea of the behavior of (5.5) in particular cases we consider
an anisotropic material which is transversely isotropic.

The elastic behavior of transversely isotropic materials may be characterized by
the five elastic constants A, N, F, C and L. We may conveniently use two angles a and 6
to describe the general orientation of the Cartesian axes within the material as follows.
Suppose that initially (that is, when a = 6 = 0) the :c:raxis is normal to the transverse
plane so that the x,-axis and ir2-axis lie in the transverse plane. The z2-axis is kept fixed
and the a^-axis and x3-axis are rotated through an angle a. The a^-axis is then kept
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fixed in its new position at angle a to the transverse plane and the z2-axis and x3-axis
are rotated through an angle 9. Both of these rotations are in the positive direction.
The cijH are then given by the equations

where

Cijkl &ip&iqdhr^l s^pqr s (5.6)

cos a 0 —sin a

[a, , ] = sin 9 sin a cos 6 sin 9 cos a

^cos 9 sin a. —sin 9 cos 8 cos aj

Cim' — C2222' — A, CU22' = N, Chj3' = C2233' = & t

^-1313' = C2332' = L, c12i2' = ii(A A), C3333' C,

and all other cim' are zero.
We consider a material for which the elastic constants are A = 5.96, N = 2.57,

F — 2.14, C = 6.14 and L = 1.64. If each of these constants is multiplied by 10n then
the units for the constants are dynes/cm2. These are the constants for a crystal of
magnesium, although they are used here merely for illustrative purposes. By employing
eqs. (4.3) and (4.4), the variation of the ratio U/U0 (where U0 denotes the energy
of the corresponding crack in an infinite material) was calculated for a = 0, 9 = w/2
and various values of h/a. The results are shown in Table 1 and indicate that, for the
particular material under consideration, the difference between the energies of the crack
in the strip and the crack in an infinite material is small provided the strip width is more
than five times the crack length. If the strip width is less than three times the crack
length then the difference in energies is appreciable. Similar results to those given in
Table 1 were obtained for the angles a = 71-/6, 9 = r/4 and a = ir/3, 6 = ir/4 and hence

Table 1. Variation of crack energy with strip width for a = 0 and 6 = ir/2.

h/a 1 2 3 4 5 10 20

U/U 0 2.19 1.31 1.14 1.08 1.05 1.01 1.00

it is perhaps reasonable to assume that this pattern would be repeated for any values
of a and 9.

Taulk 2. Variation of crack energy with C for a = 0, 8 = ir/2 and h /a = 5.

C 10 20 30 40 50 60 70 80 90 100

U/U„ 1.07 1.13 1.18 1.23 1.27 1.31 1.34 1.38 1.41 1.45

Taiilu 3. Variation of crack energy with C for a = x/6, e = 7r/4 and h/a = 5.

C 10 20 30 40 50 60 70 80 90 100

U/Uq 1.04 1.04 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05

Table 4. Variation of crack energy with C for a = 7r/3, 8 = ir/4 and h/a = 20.

C 10 20 30 40 50 60 70 80 90 100

U/U 0 1.05 1.05 1.06 1.06 1.06 1.07 1.07 1.07 1.08 1.08
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We now consider materials with the same values of A, N, L and F as for magnesium
but with various values of C. As C increases the extensibility of the material in a direction
normal to the transverse plane decreases. As C becomes large, such a material will be
a reasonable model of a fiber-reinforced material with almost inextensible straight
fibers in an elastic matrix, the direction of the fibers being normal to the transverse
planes (see, for example, Clements [8]). The variation of U/U0 for various values of
a, 9 and C is shown in Tables 2, 3 and 4. It is interesting to note that a substantial increase
in C only causes a marked change in U/U0 in the case when a = 0 and 9 = ir/2. For
these values of a and 6 the crack lies in a transverse plane and the "fiber direction" is
normal to the plane of the crack. If the "fiber direction" is at a substantial angle to the
normal to the plane of the crack then, on the basis of the results in Tables 3 and 4, it is
reasonable to conclude that an increase in inextensibility in the "fiber direction" has
negligible effect on the crack energy.

In conclusion, the results show that for a material which is not "strongly anisotropic"
it is reasonable to use the energy for a crack in an infinite material as an approximation
for the energy of a crack in a strip provided the strip width is greater than roughly
twenty times the crack length. If, however, the material is "strongly anisotropic" or,
more particularly, is almost inextensible in a particular direction, then some care is
needed in approximating a crack problem for a strip by a similar problem for an infinite
material.
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