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Abstract. A new variational principle of virtual dissipation generalizing d'Alembert's
principle to nonlinear irreversible thermodynamics is applied to compressible heat-
conducting fluids with Newtonian and non-Newtonian viscosity. The principle is applied
in the context of Eulerian formalism where the flow is described with reference to a fixed
coordinate system. New concepts of entropy displacement and mass displacement are
used as well as a new definition of the chemical potential which avoids the usual ambi-
guities of the classical thermodynamic approach. The variational principle is used to
derive a novel form of field differential equations for the coupled fluid dynamics and
convective heat transfer.

1. Introduction. A new variational principle which we have referred to as the
principle of virtual dissipation of wide generality has been shown to govern dissipative
thermodynamic systems both linear and nonlinear [1], It was applied to a new fundamen-
tal approach to the thermorheology of continua including Newtonian and non-Newtonian
viscous, compressible, heat-conducting fluids [2]. However, the treatment was based on a
material description where the coordinates of the fluid particle ij, are considered as
functions of their initial coordinates x, :

= Uxh , t). (1)

In such a material description the density p per unit initial volume depends on the initial
coordinates a;, , so that the treatment is applicable to a fluid which is nonhomogeneous
at rest.

In the present treatment we shall consider a fluid which is homogeneous at rest with
a uniform value of the density p0 , the pressure p0 and the temperature Tr . For such
a case it is possible to express the principle of virtual dissipation in Eulerian form, where
the space coordinates £, and the time are the independent variables.
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The unknowns are now new variables iS,(£t , t) and Mx(h , t) introduced below ((23),
(24)) and representing fields of entropy and mass displacements. New definitions are
obtained for the chemical potential and the fluid pressure which avoid the usual ambig-
uities of the classical treatment.

Field differential equations in novel form are derived from the variational principle
for the coupled dynamics and convective heat transfer. This is in contrast to current
procedures oj deriving variational principles from the differential equations.

2. Principle of virtual dissipation in Eulerian form. In its Eulerian form the prin-
ciple of virtual dissipation is expressed by

/, (5k(P — p®, 8Ui + pa, 5u, + T 5s*) dtt = 0 (2)

where the integration is over a domain £2 of space defined by the fixed coordinates £,
with the element of volume d& = , d£2 d%3 and no variations at the boundary. At a
given time t and at the fixed point £, , is the body force, p the fluid density, T the
absolute temperature and 5u{ a virtual material displacement. Per unit volume at point
£, and time t, (P is the cell potential as defined previously ([1, 2]) and s* is the entropy
produced. The symbol 8R denotes a restricted variation for which 8s* = 0. With the
velocity vt the fluid acceleration is

dVi . dv, . ."■ ' T, + '< Wi (3)
It should be noted that, in contrast with the previous treatment, the unit element is

not a material cell but a fised cell of unit dimension in space with matter flowing through
its boundaries. From the viewpoint of thermodynamics it is an open cell.

In order to formulate explicitly the variational principle in its Eulerian form we must
introduce the concepts of mass and entropy displacement as well as a new approach to
the definition of chemical potential which avoids some of the difficulties and ambiguities
involved in classical thermodynanics.

3. Chemical potential and entropy displacement. The cell potential of the unit
volume may be written

(P = p(P (4)

where

(P = u — Trs (5)

and where (p, u and s are respectively the cell potential, the internal energy, and the
entropy per unit mass. The variation is

5(P = (P bp + p 59. (6)

According to a previous result ([1, 2]) we write

5(P = -p a(-) + 9 8s (7)

where p is the fluid pressure as a known function of p and s under static conditions. Note
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that this definition is purely thermodynamic and does not involve the viscous stresses,
while 6 = T — T, is the excess temperature over the initial equilibrium temperature Tr .
Combining (5), (6) and (7) yields

8(P = ti dp + d 5S, (8)

where S = ps is the entropy per unit volume and

n = u - Ts + 2 (9)
P

is the chemical potential which is a known function ^(pS) of p and S. It is completely
defined and does not contain any arbitrary constant since it is assumed that u = s = 0
in the initial equilibrium state. From (8) we derive

d(P/dp = fi, d(P/dd = S, (10)

thus providing a new definition of p..
We shall also need the concept of entropy displacement already introduced earlier

in a more restricted form [3], Consider the material time derivative of s multiplied by p:

Ds ds . ds ,,, >
Pm = pJt + pViWr ( }

Taking into account the conservation of mass condition

If + 4 (pO = 0- (12)
(11) becomes

pi?rft{p~s) + i(pv''s)- (13)
On the other hand, the same material derivative times p may be written

Ds
p Dt

1 dJi . . „ d (J,\ 1 . dl . ,
T dl + S" dl \T J T2 ' dl + Sr (14)

where is the rate of heat flow by conduction per unit area and s„* is the rate of entropy
production per unit volume due to viscosity. Equating expressions (13) and (14) yields

d_
dt (pv-s + fr) - f2 J< ̂  + s„*. (15)

We define the entropy displacement vector as

S< = »S7 + SJ (16)
where the time derivatives

= Pv,s, = J i/'T (17)

are respectively the rates of entropy displacements by convection and conduction.
Furthermore,

<18»
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is the rate of entropy production per unit volume due to thermal conduction. Hence,
integrating (15) with respect to time with zero initial conditions, we obtain

r) Si
s = + S* (19)

where

s* = Sr* + s,* (20)

is the total entropy produced per unit volume. Eq. (19) may be considered as an entropy
conservation equation in terms of the entropy S per unit volume and the total entropy
displacement field ft, . The term

s = -dSt/dZt (21)

will be called the entropy supplied per unit volume. Relation (21) constitutes a funda-
mental holomonic conservation constraint between s and . We may also write (19) as

S = s + s*, (22)

i.e. the total entropy of the unit volume is the sum of the entropy produced and the
entropy supplied by convection and conduction.

4. Variational derivation of the field equations. The field will be defined by seven
variables. Six of the variables are represented by two vectors, one being the entropy
displacement

s, = S^k , 0; (23)

the other is the mass displacement

M, = A/.fe , t) (24)
defined by the relation

Ait = PV, . (25)

It satisfies the mass conservation equation (12) which may be written

p = —dMi/d£ i (26)

The seventh variable is the scalar s* representing the entropy produced per unit volume.
When applying the variational principle (2) we vary the vectors S< and A/, . The

various terms in the integrand of (2) are obtained as follows. Accoridng to (8) and (22)
we write

S(P = m + 6 3<P = m + d S(s + s*). (27)

In order to obtain the restricted variation o,t we put Ss* = 0. Hence

5fl(P = ix Sp + 9 Ss. (28)

The virtual displacemrnt of a fluid particle may be written

5u, = bMJp. (29)
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The thermal conduction of the fluid is expressed by

J. = T&t' = -Hdd/dti) (30)
where k is the thermal conductivity of the fluid at point £, and time t. Hence (18) becomes

sT* = | SJSJ. (31)

The thermal conductivity k is a function of the local density p and local entropy S:

k = k(P, S). (32)

The virtual dissipation due to thermal conduction is

T 5sr* = | Sj SSJ. (33)

The virtual dissipation due to viscosity is

T i (t1) (34>
where <7,/ is the viscous stress dependent on the strain rate tensor For a Newtonian
fluid tr, ,' may be expressed as

<r,/ = dSD ,/deu' (35)

where the dissipation function is

a. = i(xv2 + 2 neM) (36)
with viscosity coefficients X' and t\ and the volumetric strain rate e' = eu'. The viscosity
coefficients are functions of the local density p and local entropy S:

X' = X'(p, S), t) = r;(p, S). (37)

The strain rate is

<38)

For a non-Newtonian fluid we have shown by a very simple derivation that the viscous
stress is expressed by

a a' = Fx Si,- + Fjfii+ F3eik'ek/. (39)

where

Fk = Fk{P, S, />, 72, /,), (40)

are functions of p, S and the three invariants

h = eu' 8^ , U = = «,/«,/*/. (41)
The total virtual dissipation is

T 8s* = T(8st* + 5s„*) = ^ 8S,t + <r„' ̂  (^)- (42)
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With expressions (28) (29) and (42) for the variations, the variational principle (2)
becomes

J p 8p 6 8s — (®i — a,) 8M, + Sj 8Sj + <r,,' — ̂  ^ ) dU = 0. (43)

An essential step is due to the relations

bp = SMi , 8s = 5>S, (44)d£i d£,

derived from the holonomic conservation constraints (21) and (26). We introduce these
values in the integrand of Eq. (43) and assume arbitrary variations oil/, and oSt different
from zero inside 12. Integration by parts then yields

/, [(t ~ - *■+ "■) +1 ,s- + ? ,Sl' dtt = 0. (45)k
It remains to evaluate 8Sj in terms of oil/, and 8S, . Eq. (17),

s; = pvts = sM, (46)

implies

8S, = s 8M< . (47)

Hence from Eq. (16) we obtain

SStT = 8S, - § SM, . (48)
Introducing the values (47) and (48) into (45), we obtain

dQ. (49)

The variations 8M{ and 8$, being arbitrary and independent, this result implies the
field equations

dp. 1 da,-/ | _ 66 „
aT ~ — ®. + + s 77" = °>of. P of; o?. (5Q)

d+ k S' ~ °-

These equations may be further transformed as follows. From Eqs. (5) and (9) we derive

(Pdp = d(P + d\~J — d(8s). (51)

Introducing the value (7) of CP, we obtain

= — - s (10. (52)
P

Hence

p d$< " a?, (53)
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Furthermore, from (48) we write

$,T = Si - sMi (54)

By substituting the values (53) and (54) the field equations (50) become

1 (dp_ _
p

do a'
dti — ®,- -f- a, = 0,

(55)
k + T($, - sM,) = 0.

These six equations contain the seven unknowns S,Mt and s*. The additional equation
may be obtained from (42) and expresses the local dissipation

Ts* = | (& - sA/,)0$, - sM.) + o*i^ (^)- (56)

The acceleration a, is expreseed by means of (3) with = M Jp, while p is given by
(26) and p, k, T and 6 are known functions of p and S.

The field equations (55) provide a novel form governing the coupled dynamics and
convective heat transfer of a viscous compressible heat conducting fluid for Newtonian
as well as non-Newtonian viscosity. The corresponding variational principle is expressed
by Eq. (2). This generalizes the variational principle obtained earlier [4, 5, 6] for un-
coupled convective heat transfer.
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