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1. Introduction. This paper deals with plane, steady flow of a viscous, incom-
pressible fluid of infinite electrical conductivity, the magnetic field lines meeting the
streamlines at a fixed non-zero angle. In Sec. 2, a new system of flow equations governing
these flows is obtained. This system is used in Sees. 3 and 4 to obtain the solutions when
the streamlines and their orthogonal trajectories generate an isometric net. Chandna
and Garg [1] studied the possible geometries of an isometric streamline pattern. These
possibilities are also confirmed by the present work.

2. Equations of motion. The steady plane motion of a viscous incompressible
fluid of infinite electrical conductivity is governed by the following system of equations:

div v = 0, (1)

(v-grad)v + - grad p = ?V2v + - (curl H) X H, (2)
P P

curl (v X H) = 0, (3)
div H = 0, (4)

where v denotes the velocity vector, H the magnetic field vector, p the pressure, p the
constant fluid density, v the constant kinematic viscosity and i± the constant magnetic
permeability.

In this paper, we study non-aligned plane flows for which the magnetic lines lie in
the flow plane and are constantly inclined to the streamlines everywhere in the flow
region. Letting <t> ̂ 0 denote the constant angle between v = (v, , v2), H = (//, , H2)
in the (x, y) plane and employing (3), we find

V\H2 — v2Hi = vH sin <j> = A (5)

where v and II are the magnitudes of velocity and magnetic intensity vectors respectively
and A is an arbitrary constant which is non-zero due to the exclusion of aligned flows.
Since <f> is constant, Eq. (5) implies the existence of a constant B so that

ViHi + v2H2 = vH cos 4> = B (6)

where
B = A cot 4>, v2H2 = A2 + B2 = A2 cosec' <t>. (7)

The constant B is zero if and only if the flow is a crossed flow when v and H are mutually
orthogonal.

* Received June 14, 1975.
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Solving (5) and (6) for v and H, we have

v = |HXk + |H, (8)

H = 4kXv + ~v (9)
V V

where k is the unit vector normal to the plane of flow.
Employing (8) in (1) and using (4), we have

kcurl H = 2k (grad In H X H) + grad In H H.

This equation, using (7) and (8), yields that the current density vector J = curl H is
given by

curl H = ^ \ A grad (4)-vjk. (10)

Using (9) and (10) in (2), we find for the linear momenutm equation the form

(v grad)v + grad (^j = vV'v + ~ grad ^4) ■ vj|Bk X v — Av\. (11)

Employing (9) in (4) and using (1), we find that v satisfies
'2
^ grad In v-(Ak X v + #v)fk + curl v = 0. (12)

Therefore, we have the following:
The system of equations (l)-(4) governing the steady plane motion of a viscous

incompressible fluid of infinite electrical conductivity is replaced by the system of equa-
tions (1), (9), (11) and (12) for constantly inclined non-aligned flows.

Eqs. (1) and (12) are two equations in v and can be employed to solve for the velocity
field. However, the solution thus obtained must satisfy the integrability condition for
the pressure function which is derived by taking curl of (11). Having obtained v, we
solve for the pressure function and the magnetic field by employing (11) and (9) respec-
tively.

3. Solutions of flows having an isometric streamline pattern. Let

x = x{a, /3), y = y(a, 0) (13)

define a system of orthogonal curvilinear coordinates in the plane of flow such that
the curves (}(x, y) = const, represent the streamlines and a(x, y) = const, represent
their orthogonal trajectories. Letting e, be the unit tangent vector to ft = const, in the
direction of increasing a, e2 the unit tangent vector to a = const., hi (a, /S) da and
h2(a, jS) dfl the components of a vector elements of arc length, we have

v = v(a, /3)e, , ^

ds2 = hi\a, p) da2 + h 2{<x, 13) tf/32.

In the present section we enquire what possible solutions for constantly inclined non-
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aligned flows are possible when flow streamlines and their orthogonal trajectories form
an isometric net. Therefore, we search for solutions when metric coefficients of the natural,
i.e. streamline, coordinates satisfy the condition

hi2(a, /?) = h2\a, 0) = h(a, (3) (say), (15)

where

4(<"»- (I)' + itJ - (I)' + (s)' <16>
and h(a, fi) satisfies the Gauss's equation [2]

(I?+w)ln Vh - °- (17)
For our analysis, we use some properties of an isometric orthogonal net and these

are stated in the following lemma [2]:

Lemma: If /(z) = a(x, y) + y) is a complex function so that the curves a =
const, and /3 = const, generate an orthogonal isometric net, then j(z) = a(x, y) + i/3(x, y),
z(£) = x(a, 0) + iy(a, 0) are analytic functions of z = x + iy, £ = a + ifi respectively
and, furthermore,

m /"(z) L9h i nsi
{/'(«)j2 2h da + 2h d/3 ' ( >

.... dWi = dW, dW? = dW1
(U) da d/3 ' da d/3

where

W = — — — W = — — (19)2hda' 2 2/i3/3 ( J

and h(a, /3) is defined by (16).
Now, returning to our constantly inclined non-aligned flows governed by the system

of equations (1), (11), (12) and (9), we find that, relative to the chosen orthogonal
natural isometric net, the flow is ogverned by:

~(Vhv) = 0, (20)
da

dv , 1 dp d Jl d , /, A , 2n(A2 + B2) dv /(11,

H = - e, + - e2 . (24)
V V
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It follows from (20) that

v{a, P) = ^ (25)

where <p(@) is an arbitrary differentiable function of (1.
Employing (25) in (23), we obtain

AW, -BW,- A (26)

where W^a, /3) and W2(a, (3) are defined in (19). Differentiating (26) with respect to a
and using the Cauchy-Riemann conditions satisfied by Wi (a, /J), W2(a, /3) as given in
(19), we obtain the following first-order uncoupled partial differential equations:

A ^ + B ^r1 = °' (27)op oa

B ~ A = °- (28)
op oa

Solving (27) and (28), we obtain the general solutions for W, and W2

Wi(a, fi) = f(Aa - B0),
w2(a, 0) = g(Ap + Ba).

Here / and g are arbitrary functions of their arguments. If we define £ = A a — Bfi and
j? = A@ + Ba, it follows that the transformation Jacobian from the (a, /3)-plane to the
(£, r/)-plane is |d(£, y)/d(a, /3)| = A2 -\- B2 ^ 0, Therefore we can regard £ and 7? as two
independent variables. Substituting (29) in (19) and taking £, t] as the independent
variables, we find that W/(£) = WY(i?). Therefore, we have

Wi = C(Aa - B(3) + C1 , W2 = C(A/3 + Ba) + C2 (30)

where C, C, and C2 are arbitrary constants.

Employing (30) in (19) and (26), we obtain

4- (In h) = 2C(Bp - Aa) - 2C, ,
oa

(In h) = 2C(Ap + Ba) + 2C2 , (31)
dp

^ (In i) = ^ (,42 + B2)/3 - ^ + 2C2.

Integration of (31) yields

h(a, 13) = exp {AC(f32 - a2) + 2CBa/3 + 2C£ - 2C,a + C3}, (32)

W) = exp (A2 + B2)(32 + (2C2 - ^p)/J + C4| , (33)

where C3 and C\ are arbitrary constants. Therefore, for an isometric streamline pattern,
solutions for v(a, /3) and h(a, (3) satisfying (20) and (23) are given by (25) and (32) with
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^(j3) given by (33). However, these solutions must satisfy the integrability equation
for p(a, (3) obtained from (21), (22) and given by

V d (Vh, t>)l - v(~ + ~ (Vh v)da Wh d$K ') \da dpVlh 30

2n , ,2 . D2J d (\ dv\ B d (I dv\\ . .

Eliminating v(a, /3) between (25) and (34), we find that 4>(fi) and h(a, /3) must satisfy

+ *v(I MY I Ji §h\*_l?h_l
\h da) + \h dfi) h da2 h df) J

_ n(A2 + B2) h2 \2A d2h ,2Bd^h_4Adh£\ =
2 Ap \p2 \ h, da dfi h da2 h da yp

Employing (32) in (35), we get

CB& - 2ACa - 26',) + vf" - 2vf"(2AC0 + 2BCa + 2C2)
+ vi'{{2CBp - 2ACa - 2C,)2 + (2AC/3 + 2BCa + 2Q2}

MA2 + B2)
Apyp2 h2(BCl3 - ACa - C,)(A2C/3 + B2Cp + AC2 - BC,)

- K2(BCp - ACa - C,)j = 0. (36)

Differentiating (36) thrice with respect to a, we obtain

[h\BC0 - ACa - C,)(A2Cp + B2Cp + AC2 - BC,)}9 r,2

~^rf 3 [h\BC0 - ACa - C.)] = 0. (37)\f/ oa

Using (32), (33) in (37) and simplifying, we have

[C{A2 + B2)/3 + AC, - BCtHlQiBCp - ACa - Ctf
- 24AC(BCp - ACa - CO2 + 3A2C2} = 0. (38)

Eq. (38) is of fifth degree in a, /3 and is satisfied throughout the flow region. This requires
that all its coefficients must be zero. In particular, equating the coefficient of a4/3 to
zero, we have

A*C\A2 + B2) = 0. (39)

Since A ^ 0 and (39) must hold true, we find that C = 0. Setting C = 0 in (38), it
follows that for our flows the arbitrary constants C\ and C2 must satisfy

C^AC, ~ BC0 = 0 (40)
Summing up the above results, we have:

Theorem: If the natural net is isometric in a steady incompressible viscous prefectly
conducting constantly-inclined non-aligned plane flow, then the metric of this net,
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the flow speed and the magnetic intensity are given by

h(a, 0) = exp {2C2/3 - 2C\a + C3J,

v{a, 0) = exp (C4 - 5C3) exp j^C2 -

H(«, 0) = [exp (£C3 - C<) exp - C2)/S - ojJoBe, + Ae,),

wherein the arbitrary constants C\ end C2 must satisfy (40).

4. Classification and geometry of isometric flows. For flows with isometric stream-
line pattern, C = 0 and C\ , C2 must satisfy (40). Therefore, this allows one of the follow-
ing three possibilities:

(i) C = 0, C, ^ 0 and C2 = j C, ;

(ii) C = 0, Ci = 0 and C2 ^ 0;

(iii) C = C, = C2 = 0.

Employing (31) in (18) and taking C = 0, which is true for all possibilities, we have

1^-2 = C, + tC, . (42)

For -possibilities (i) and (ii), C\ + iC2 5^ 0, and integration of (42) yields

Kz) = ~(c. + «c2)ln (2 " -D) + £ (43)

where D — + il)2 and /? = £',+ iE2 are two arbitrary complex constants.
Letting z — D = r exp (ifl), where (r, 6) are polar coordinates, and recalling that

f(z) = a + iff, separation of real and imaginary parts of (43) yields

a(r, 0) = — 2 , r 2\ {Cj(lnr + E,) + C2(0 + E2)},
v°i "t ^2 ; (44)

/3(r, 0) = -Tp 2 c 2j {C2(lnr + £",) - C,(0 + E2) j.

For possibility {Hi), C, = C2 = 0, integration of (42) and separation into real and imagin-
ary parts yields

a(x, y) = L,x - L2y + M, , ^

/3(a-, j/) = L2x + L,y + M2 ,

where L, , L2 , M, and A/2 are real arbitrary constants. Summing up, we take the above
possibilities one by one with solutions and geometries.

Type (i): Taking C\ ^ 0 and C2 = (B/AjC, in (44), the streamlines are given by
Bin r — A6 = constant. These are logarithmic spirals. The flow speed, the magnetic
intensity and the metric of the net so generated are given by (41) where C2 = (B/A)C1 .
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Using these in (21), (22) and integrating, we find

V = exp |2C1(a - ~ p) + 2Ct - C,

m(A2 + B2) exp {2C,(| 18 - a) + C3 - 2c)j + C5 (46)

where C5 is an arbitrary constant.

T?/pe (ii): Taking C\ = 0 and C2 5* 0 in (44), we find that the streamlines are given
by In r = constant. Therefore, the streamlines in this case are a family of concentric
circles. Solutions are given by (41) with Cx = 0 and the pressure function is

V = | exp {2(C2|8 + C4 - C3)} + C\ (47)

where C6 is an arbitrary constant.

Type (Hi): For this type of flows, the streamlines are given by L2x + Lty = constant.
These are a family of parallel straight lines. The solutions of these flow are given by
(41) and (47) with = C2 = 0.

The discussion carried out in this paper holds true for crossed flows when B = 0.
However, the streamline geometry in flows of type (i) will change, with a family of
concurrent straight streamlines replacing logarithmic spirals.

References

[1] O. P. Chandna and M. R. Garg, The flow of a viscous MHD fluid, Quart. Appl. Math. 34, 287(1976)
[2] Berker, R., Integration des Equations de mouvement d'un fluide visques incompressible, Vol. VIII/2

Stromungsmechanik II, Handbuch der Physik, Berlin (1963)


