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-NOTES-
ON THE STABILITY OF AN OPERATOR EQUATION MODELING NUCLEAR

REACTORS WITH DELAYED NEUTRONS*

By J. A. WALKER1 (Northwestern University) and E. F. INFANTE2 (Brown University)

1. Introduction. A number of studies [2, 6, 7, 8, 9, 10, 11, 12, 15] have been made
of a system of integrodifferential equations which arise as dynamic models of one-dimen-
sional continuous-medium nuclear reactors. In particular, the effect of delayed neutrons
is considered in [1, 9].

In this paper we continue to pursue the approach exploited in [4], but consider the
effect of delayed neutrons which was omitted in that paper. In particular, we wish to
consider the system of equations

Jt viO = ~p(t) Ja a(z)T(t, z) dz - ~ p(t) + XJ XMO,

~Ttc<(0 = JiViO - *M0, i = 1, 2, • • • , m. (1.1)

jt T{t, z) = e(z)[p(0 - v] + ^5 T(t, z), zGfl,

for t > 0, with appropriate boundary conditions for T on the boundary dS2 of 0, a subset
of the real line R, and with initial conditions

p(0) = p0 , c<(0) = ci0, i = 1, 2, ■ • • , m, T(0, z) = f(z), z E (1.2)

This system [9] is an appropriate model for the dynamic behavior of a continuous-
medium nuclear reactor with m groups of delayed neutrons with concentrations Ci{t) > 0.
Here, T(t, z) is the deviation of the temperature from equilibrium and p(t) > 0 is the
instantaneous power, with pit) = v > 0 at equilibrium. The constants I*, 0, , X, are
positive and ft = /3. It is noted that the equilibrium (p{t), c;(/), T(t, z)) =
(v, (f3tv/\,l*), 0) represents a steady state of operation of the reactor. We refer the
interested reader to [1, 9] for a detailed explication of this model.

This system of equations and its variants have been studied extensively by Levin
and Nohel [6, 7, 8, 9, 12], Miller [10, 11] and their students [2], The majority of these
studies have viewed this problem as a nonlinear Volterra integrodifferential equation.
Here, as in [8, 4], the theory of C0-semigroups is applied. We consider an abstract equation
of which (1.1)-(1.2) is a special case and show that, under appropriate assumptions,
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it generates a Co-semigroup on a Hilbert space; we then apply appropriate Liapunov
direct method arguments to study the asymptotic behavior of the solutions.

Here we extend the results obtained in [4] by including the effect of the delayed
neutrons. Our results are similar to those obtained in [9] and are applicable to a more
general type of equation, which includes cases in which heat conduction is not necessarily
linear; our method of proof is quite different.

Finally, existence, uniqueness and stability results can be obtained, as is shown in
what follows, in a variety of norms, depending on the type of result desired.

2. The abstract equation. For our purpose it is convenient to view (1.1) in a slightly
different form. Upon defining

p(t) = v exp (w(0),

Ci(t) = m, exp (q,(t)), i = 1,2, • • • , m, (2.1)

Mi = Piv/Xil*, i = 1,2, • • • , m,

Eqs. (1.1) become

A
dt

.d
dt

u(t) = - [ a(z)T(t, z) dz + iLli IexP (qS) — u(0) - 1],
./ Q { = 1 i

qt(t) = A,[exp (u(t) - q,(t)) - 1], i = 1, 2, ■ • • , m, (2.2)

~ T(t, z) = ?e(z)[exp (u(t)) - i] + T(t, z), z £ Q,

for t > 0, with appropriate initial and boundary conditions.
Interpreting the integral in (2.2) as the real inner product for £2(^), let 3C be a real

Hilbert space such that 3C C £2(ii) and ||w|U, < M |[w||K for some M > 0 and every
w £ 3C. Also, let L : 5D(L) —> 3C be an operator, not necessarily linear, such that

i) the domain 5D(L) is dense in 3C,
ii) the range R(I + nL) = 3C for all sufficiently small n > 0, (2.3)

iii) (Wi — iv2, LiVi — Lw2)x > —a — w2\\x for every u\ , iv2 G C£>(L) and some
real number a.

Assuming a £ £2(^), e £ 3C, consider for u : R+ —> R, q: : R+ —» R, iv : R+ —> 3C, the
operator equation

m 3

u = -(a, w(t))e, + Xj ~ [exp (q,(t) - u{t)) - 1]

q,(t) = A,[exp (u(t') - q,(t)) — 1], i = 1, 2, • ■ • , m, (2.4)

w(t) = c[exp (u(t)) — l]e — Lw(t),

for t > 0, with appropriate initial conditions in R X Rm X SC.
It is clear that (2.4) is a generalization of (2.2) by letting Lw{z) = — (d2/dz2)w(z) and

choosing 3C as one of the Sobolev spaces 3C2"(i2), n = 0, 1, • • ■ , with 3C2°(0) = «£2(0); in
this case (2.3) holds for some a < 0. In general, (2.3) implies that 0 £ £>(L) and L0 = 0;
therefore, (u(t), qi(t), ■ ■ ■ , qm(t), w(t)) = (0, 0, • • • , 0, 0) £ R X Rm X 3C is an equi-
librium state for the system (2.4).
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Define a : ft —» ft, <r(0) = 0, and consider

x(t) = Ax(t), x(0) = x0 G 2D (.A) C 9C; (2.5)

where 9C = ft X Rm X 3C is endowed with inner product
m

(xi , x2)x = + XI + <Wi , w2)x for x, = (u, , qmj , wf) G 9C,
i - 1

j = 1,2; 20(A) = { (m, gi ,•••,?„, w) G 9C | w G £>(!,)} J
and

(m 8- \
-(a, w)£, + ]? _ M)> xiff(w - gi), • • ■ > Xm<r(" - qm), v<r(u)e - LivJ-

(2.6)
We remark that (2.5) includes (2.4) (in this case a(z) = exp (z) — 1, z G R), and that
AO = 0, which implies that x = 0 is an equilibrium solution of (2.5).

We now show, under a restriction not satisfied by the nonlinearity a of interest to us,
that (2.5) generates a C0-semigroup.

Proposition 1: Let L satisfy (2.3) and assume that a is uniformly Lipschitz con-
tinuous on R. Then

S(t)x = lim (l — -A)x, x G 9C, t > 0, (2.7)
n—»oo \ 71 /

defines a Co-semigroup j $({)}(>0 on 9C; moreover, if x0 G ©(-'1), then S(t)x0 is the unique
strong solution of (2.5).

Prooj: The assumptions on L imply that 3D (A) is dense in9C. Let K be the Lipschitz
constant associated with a. Then, for any x, , x2 (E 33(A) we have that

(x, - x2 , Az, - Ax2)a < (M ||a||£, + vK ||e|Isc) |w, - u2\ ||ie, - w2||,c

+ fr |«i ~ W2I2 + K \uj - u2\ £ (|j + x«) \Qn ~ Qii\
m

+ K ^2 \i l^ii — qi212 + a ||wi + w21 |JC2
i = 1

< CO \ \Xi - 1 |gc2

for some real number «. Hence, oil — A is accretive [3].
We claim that (R(I — fiA) = 9C for some sufficiently small /jl > 0. Indeed, it follows

from (2.3) that for every positive ^ such that na < 1 the operator I + nL is invertible
on 3C and ||(7 + ^L)~lw\\x < (1 — m«)_'11^1 lac • If we define : R —* R by =
z + i = 1, 2, • • • , m, the uniform Lipschitz condition on <r implies that is
invertible 011 R for 0 < m < 1 /K\t and \HII,i~lz\ < (1 — yu/CX,)-1 |s| . Letting
(<h > ''' 1 Qm , w) be a fixed but arbitrary element of ft"' X 3C and defining F„ : ft —> ft by

m 8 ■
F„(u) = u + n(a, (I + tiL)~\w + nv<r{u)e))£„_ — v \u ~ ?;))>

i = l &

it follows that, for every sufficiently small n > 0, F„ is continuous and FJu) —> °° (— 00)
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as u —* °° (— °°). Hence, (R(f„) = ft for every sufficiently small /i > 0; in turn, this
implies that (R(I — nA) = SC for every sufficiently small n > 0.

Application of Theorems I and If of [3] imply that (2, 7) generates a C0-semigroup
{S(0}.*o, an(f, if x(-) : R + —>9C is a strong solution of (2.5), then x(t) = S(t)x(0), t > 0.
Furthermore, by Theorem 7.1 of [5] there exists a unique solution of (2.5) for every
Xo G D(^l). The proof is complete.

We remark that in [3] it is also shown that {S(0!<>o is of class Q„(9C), i.e.,

||<S(0*i — >S(/).r2|| K < ||a;i — x2||a exp (cot), t > 0,

for every xx , x2 G 2C. Also, Theorem 7.5 of [5] assures us that, for x G 30(A), AtS(-)a; is
right continuous on R*, S(-)x is right differentiable on R+, and this right derivative
equals AS(t)x for every t G R ' •

We now proceed to use these results to show, through a stability argument, that we
can relax the conditions on <r so as to encompass our exponential nonlinearity.

3. The main results. We now present results for (2.5)-(2.6) which are applicable
to (2.4).

Pro-position 2: Let L satisfy (2.3) and assume the following conditions hold:
1. a : R —> R is locally Lipschitz continuous on R and

i) for every 5 > 0 there exists vs > 0 such that ua(u) > i)Su2 for every u G R
with \u\ < 8,

ii) / a(z) dz co as \u\ —> od ;
J 0

iii) for every ut , u2 G R, <j(ui)<j(u2 — U\) + a(u2)<T(ui — u2) < 0.
2. There exists a symmetric bounded linear operator (7:3C —> 3C such that

i) (w, Giv)x > y 11it'11ac2 f°r some y > 0 and every w G 3C,
ii) {Ge, iv)x = (a, iv)e2 for every w G 3C,

iii) (w, GLw)x > 0 for every w G SD(L).
Then (2.6)-(2.7) define a Co-semigroup {S(t)},>0 on9C and S(-)x : R+ —> 9C is the unique
strong solution of (2.5) for every x G 25(A); moreover, the equilibrium x = 0 is stable and,
for each p > 0, the set Cp = \x G 9C | V(x) < pj is bounded and positively invariant
under {<S(<)} (>o , where

/»ii m r*qi

V(x) = v / a(z) dz + Mi / <r{?) dz + §(«>, Gw)x
^0 i = 1 *'o

for (u, q, , ■ • • , qm , iv) = x E X.
Proof: The assumptions on a imply that each e„ is bounded, 6Pl C CPs for p{ < p2,

and 9C = U>0 Gp . Consider a fixed but arbitrary p > 0 and the corresponding Q„ .
Since Cp is bounded, it follows that for x G the function u can be identified with some
uniformly Lipshitz continuous function <t„ : R —> R. If we denote by A„ the operator
defined by (2.6) on £)(AP) = S)(A) with <r replaced by <rp , it follows from Proposition 1
that Ap generates a C„-semigroup !$„(<)),>0 on SC. Since S„(-)x is everywhere right
differentiable on R+ for x G 'D(A), it follows that the functional

V(x) = i [7(Sp(«)a:) - V(x)], x G ep ,
o £
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is given by

V(x) = —(iv, GLw)x + MAikOM?. — m) + <?{qi)cr{u — g,)]
J =1

< 0

for (u, qi , • • • , qm , w) = a; G 20(4) ep ; hence, the denseness of 20(A) and the fact
that {*SP(<)},>0 is of class Q„,(SC), together with the fact that T'(.S'„(')-e) is nonincreasing
for x G 3D(A) GP , imply that V(Sp(-)x) is nonincreasing for x G &P ■ Therefore Cp
is positively invariant under {Sp(l) },>o .

The assumptions of the theorem also imply the existence of positive numbers at , a2
such that ai 11.-c112 < V(x) < a2 ||x||2 for everv x G 6P; hence x = 0 is a stable equilibrium
of {S,(0Uo.

Since Ax = Apx on SD(A) r\ ep and 9C = ^P>0 CP , it follows that .4 generates a
Co-semigroup {S(t) },>0 on9C defined by (2.7); moreover, S(t)x = Sp(t)x for x G CP, t > 0.
Therefore {>S(<)}<>o has a stable equilibrium at x = 0, S(-)x : R* —» 9C is the unique
strong solution of (2.5) for every x G D(A), and each e„ is positively invariant under
{S(t)},>0 . This concludes the proof.

At this juncture, some remarks seem appropriate. First of all, from the proof of this
proposition and the remarks after Proposition 1, it follows that for x G 20(A), S(-)x is
continuously right differentiate on R + and its right derivative is AS(-)x. Secondly,
for each p > 0, it is seen that {<S(0K>o is of class Q„p(e„), where it is noted that wp
might depend upon p.

Finally, condition 1 (iii) of Proposition 2 is needed because of the particular Liapunov
functional used in the proof. We note that l(iii) is satisfied by any odd monotonic func-
tion; it is also satisfied by <r(z) = exp (z) — 1, the function of particular interest here.

We now proceed to strengthen our stability result by adding some further conditions
to those of Proposition 2.

Theorem: Let a be given by <r(z) = e= — 1 for z G let L satisfying (2.3) be such
that [|CXw||k/IMIx is bounded on bounded subsets of 35(L) for some bounded linear
operator C : 3C —> 3C. Assume that condition (2) of Proposition 2 is satisfied and, for
every S > 0, there exists a > 0 such that (w, GLw)x > ||w||je2 for every 3C with
IMIae < S. Then (2.6)-(2.7) define a C0-semigroup {<S(Oh>o on9C and S(-)x : R+ —+ EC is
the unique strong solution of (2.5) for every x G 2D(A); moreover, the equilibrium x = 0
is stable and, for each p > 0, the set Gp = [x G 9C | V (x) < pj is bounded and positively
invariant under {<S(<)l;>o , where

/»u m

V(x) = v / a(z) dz + ^ >Xi / <x(z) dz + |(w, Giv)k
Jo t=l ^ 0

for (u, qi, • • •, qm, w) = x G 9C. If ||Ce||jc 0 and ps > 0 for some S > 0, the equilibrium
is exponentially asymptotically stable; if | |Ce||^ 0 and p5 > 0 for every S > 0, then to
each bounded set ® C 9C there corresponds positive numbers M and u such that

||S(0x||a: < M ||.r||sc exp (-ut)

for every x G ®, t > 0.
Proof: Since all assumptions of Proposition 2 are satisfied, only the conclusions

pertaining to the assumption ||Ce| 1^ ^ 0 remain to be proved. For ||Ce||3C ^ 0 and
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Mj > 0 for some 5 > 0, choose p = yS2 and note that
m

V < -Hi (Mix2 - 2 - m)2
1=1

for every (u, qi , ■ • ■ , qm , w) = x £ 20(A) P\ e„ .
Define a function U(x) = —2u(Ce, Cw)x where (u, qt , ■ ■ ■ , qm , w) = x £ 9C; then,

for a; £ 2D(4) Cp , it follows that

U(x) = hm 7 [?7(S(0as - U{x)}
t-> 0 t

= -2(Ce, Civ),c -(a, w)£a + X) ~ (exp (g, - u) - 1)J

— 2vw(exp (u) — 1) 11 Ce 113C2 + 2u(Ce, CLw)x

< -2vKtu2 + 2 ||Ce||jc ||C|| {m ||a|U, \\w\\K2 + K2 ||^||3C |g, - u|)

+ 2K3 | \Ce\|3C \u\ ||w| |ac

for some positive numbers Kx , K2 , K3 , depending on p. Since v > 0, (U.X, > 0, and
us > 0, it follows that there exists a sufficiently small 6 > 0 such that

IMIx2 < V(x) + 6U(x) < at 11^| |a;2j x £ 9C,
V(x) 4- eil(x) < —a5 11x11sc2, x £ 2D(A) Cp ,

for some positive numbers a3, a4, a5 depending only on p = -y52; moreover, the denseness
of 2D(yl) and the fact that | S(t) j, >n is of class imply that the last inequality holds
for every x £ . It now follows that

||<S(0«l|a:2 < (ot,/ot3) ||x|| ac2 exp (—(a5/a4)<), x £ <ZP ;

hence, the equilibrium x = 0 is exponentially asymptotically stable. Since u p> o ep = ac,
each bounded set ® £ 9C is contained in some , p > 0; hence; the proof is complete.

If L is linear, the existence of a suitable operator C is assured, since (2.3) implies that
L + fil has a bounded inverse for all sufficiently large fi > 0; in this case we may choose
C = (L + 18I)~' and note that ||e||jC ^ 0 implies ||Ce|^ 0.

4. Some remarks. First of all, it should be remarked that our stability theorems
imply that if the effect of delayed neutrons is destabilizing, this destabilizing effect is
sufficiently weak that we cannot detect it through the use of our Liapunov functional
V(x); that is, if the system (1.1) with m = 0 satisfies our condition for stability, so does
the system (1.1) with any positive m. This result is not surprising, since our conditions
for stability are only sufficient.

Secondly, our stability results above depend on the existence of the bounded, linear,
symmetric operator G : 3C —» 3C that satisfies two conditions: (i) (Ge, w)K = (a, w)£„ for
every w £ 3C, and (ii) (w, Giv) is a Liapunov functional which proves stability (possibly
asymptotic stability) for the abstract equation w = Lie, iv £ 2D(L) £ 3C. Of course,
the determination of such a G depends on the specific operator L and its properties.
In [4], where delayed neutrons were ignored and 3C was chosen as ii2(li) with L : 20 (L) —>



NOTES 427

£2(0) a linear nonnegative symmetric operator, we required an operator G that satisfied
conditions identical to those stated here. For L a linear second-order differential operator,
such as appears in (1.1), we displayed several possible forms for G which yielded a class
of stability conditions. These same forms for G are applicable to the study of (1.1). We
refer the interested reader to [4],

Finally, as well as incorporating the effects of delayed neutrons, we have improved
upon the results of [4] in two directions. Since L is permitted to be nonlinear, generaliza-
tions of (1.1) which involve the effects of nonlinear heat conduction can be studied;
secondly, due to the somewhat free choice for X C &-JV-), existence, uniqueness, and
stability results can be obtained for (1.1) in terms of a variety of norms.
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