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Abstract. The dynamic buckling of a long column with small dimple imperfections
resting on a nonlinear foundation and subjected to axial step-loading is studied using a
formal multi-variable perturbation expansion. Simple asymptotic formulas are obtained
for the dynamic buckling load and lateral deflection in terms of the Fourier transform
of the imperfection. It is found that the static and dynamic buckling loads are equal.

Introduction. The existence of small geometrical and physical imperfections in
certain structures leads to large reductions in their buckling strengths. Such structures
are known as "imperfection-sensitive". The first general static theory of the post-buckling
behavior of these structures is the well-known theory of Ivoiter [1], Budiansky and
Hutchinson [2, 3, 4] have extended this theory to dynamic buckling. These theories
are based essentially on the assumption that the imperfections are in the shape of the
classical buckling mode. In [5] the authors showed that this restrictive assumption
need not be made to obtain asymptotic expressions for dynamic buckling loads. Here we
consider an infinitely long column with an initial imperfection in the shape of a localized
dimple. The column rests on a nonlinear elastic foundation and is subjected to an axial
load. The static problem has been studied in [6] using equivalent linearization as well as a
perturbation expansion involving double scaling in the spatial variable. If the initial
imperfection is small, these two methods yield the same expression for the static buckling
load in terms of the amplitude of the imperfection. We consider the extension of these
results to time-dependent loadings. In this paper we present the case of suddenly applied
loads that are subsequently maintained at a constant value.

Differential equation. We consider an infinitely long column with a small localized
initial imperfection resting on a nonlinear foundation which is subjected to an axial
compressive load. The load is suddenly applied and thereafter maintained at a constant
value. The nondimensional form of the equation for the lateral displacement w(x, t)
of the column is

wtl + wxxxx + 2\wxx + w — aw3 = — 2\tw0xx (1)
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where an alphabetic subscript denotes partial derivative, and the nondimensional axial
coordinate x, lateral displacement w, axial load parameter X, stress-free initial displace-
ment iv0 and time t are related to the corresponding physical quantities by

x = (ki/EI)1/4X, w = (k,/kl)1/*W, X = P/2(EIk,)1/2

ew0 = {k3/k{)1/2Wa, t = (kJm)inT.

Axial inertia and nonlinear geometric effects are neglected. The assumption is made
that the initial displacements and velocities are zero. As shown in [5], this is equivalent
to assuming that the nondimensional initial displacements and velocities are of the same
order as the imperfections, e is a small imperfection parameter, EI is the bending stiffness
of the column, P is the magnitude of the axial step loading applied at time T = 0, and m
is the mass per unit length of the column. The column is restrained against additional
lateral deflection W by a foundation that produces a restoring force per unit length
kiW — ak3W3. a takes on the value 1 or —1 depending on whether the foundation
behaves like a "softening" or "hardening" spring. We assume that the imperfection
shape iv0 (x) is continuously differentiable and satisfies the exponential decay condition

|w(.r)| < M exp ( —0 \x\)(M, 0 > 0). (2)

The classical theory (linear, time-independent eigenvalue problem with w0 = 0) for
any length column with simply supported ends consists of

wxxxx + 2\wxx + w = 0, w = wxx = 0 at x = 0, rir,

where r is a measure of the length of the column. The eigenfunctions are

wn(x) = sin (nx/r), n = 1, 2,

with corresponding eigenvalues

X. = i (r/n)\ 1 + (n/r)*\, n = 1, 2, • • • .

For columns of length given by r an integer, the classical buckling load (lowest eigen-
value) is X = 1, corresponding to n = r. If r is not an integer, the buckling load Xc satisfies
the inequality

0 < Xc — 1 < l/[2n(n + 1)], n < r < n + 1.

Thus, for r J>> 1, \c = 1 + 0(r~2), we consider the column to be of infinite length. The
case for which r = 1 and the imperfection is arbitrary has been discussed in [5],

Dynamic theory. The problem to be considered is

wtt + wXIIX + 2Xw« + w — aw3 = —2\ew0lI, — °° < x < <», t > 0, (3)

iv, wx —» 0 as x —» ± <» , ^

w = w, = 0 at t = 0.
We consider e <3C 1 and seek to determine the maximum value XD of X less than the clas-
sical buckling load Xc such that the deflection w vanishes as |.r| —> . This condition
must be distinguished from the boundedness condition imposed for imperfections in
the shape of classical buckling modes (see [4]) and for finite-length structures (see [5]).
This condition was imposed in the solution of the time-independent problem [6]; however,
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it was not specifically noted in that report. As in [6], a perturbation parameter 5 may be
introduced and defined as

62 = 2(1 - A). (5)

As in this problem, we introduce a new variable f = Sx. As shown in the finite column
problem [5], the dominant response depends only on the long-time scale r = 8t and not
on the short-time scale t. We assume that w is a function of x, f, and t, write w(x, t)
= u(x, f, t; §), and expand w and \e in power series in 5:

w(x, t) = u{x, f, r; 6) = 2 uM(x, f, t)S", (6)
n= 1

Xe^Ze'-'S". (7)
n = 1

Substituting these expansions into (3) and equating like powers of S leads to the sequence
of equations:

LuU> = ~2tn)W0rx , (8)

Lu<2) = — 2t2)w0xx - 4uJM,<u - W\ (9)

Lu<3) = -2e(3,«w - 4Mx„r(2) - 4ulf(2) -

-6- 2%ra) + m„U) + a(w(u)3, etc., (10)

where L = (d2/dx2 + l)2. The initial conditions (4) become

uM (x, f, 0) = urM(x, r, 0) = 0, n = 1, 2, • ■ •. (11)

Guided by the analysis in [6], we admit the possibility of discontinuities in the u'"'s
or their derivatives at x = 0 and f = 0. However, we insist that w, wx , wxx , and wxzx
must be continuous since they correspond to displacement, slope, moment, and shear
respectively. When these continuity conditions are applied to the expansion (6), it is
found that the following combinations of functions must be continuous in x and f :

uM, (12)

t*,"0 + V"_1\ (13)
ujn) + 2wjf<"~1) + un(n-", (14)

^ J (»—1) I Q.. (n—2) I (n-3) /i r\
Uxxx + 6UXX{; + OUxU + , (15)

for n = 1, 2, 3, • • • , where ua) = 0 for k < 0.
The real-valued bounded solution to (8) is

w(1)(x, f, r) = a(1)(f, t) exp (ix) + aa)(f, r) exp (~ix) + fn'(x) (16)

where (_) denotes complex conjugate of ( ), and /<u(x) is a particular solution of

Lj«o = _2 eMw0xx, for n = 1. (17)

We stipulate that the /<n)'s have bounded Fourier transforms (co), but may have jumps
at x = 0 and f = 0. Let

[/<"'] - /("'(0+) - /u,(0"), [/(n"] s /<n)'(0+) - /<n>'((T), etc.,
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where prime ' denotes differentiation with respect to the argument of the function.
Thus with n = 1

/u>(co) = Hu'(co)/(co2 - l)2 (18)

where

tf(n)(co) = 2eMaaH>0(u) + [/'"""] -

- («2 - 2)[/<""] + iw(co2 - 2)[/("'], n = 1, 2, 3, • • • . (19)

Boundedness of (to) requires that

//<n)(±l) = //<n),(±l) = 0. (20)

Note that the analyticity of ®0(w) at oj = ±1 is assured by condition (2).
From (16) and the continuity conditions (12)-(15) for n — 1 we have

[,<»] = _[o»>] _ [fl(.)]j

[/(,)'] = -t[a(1)] + i[a(1)], (21)

[/(,)"] = [a<u] + [a(1)],

[/(1)'"] = t[a(1>] - i[aw],

where

[a'1'] = [a(1>(0, r)] = aU)(0+, r) - aa'(0", r). (22)

Since in general tf>0(l) 5^ 0, from (21) and (20) we obtain eU) = 0 and [a(1>(0, r)] = 0.
Consequently fn)(x) = 0 and

Uu,(:x, f, r) = a<u(f, r) exp (ix) + aa)(f, r) exp (-ix) (23)

with

[aU)(0, r)] = [aa)(0, r)] = 0. (24)

For ®0(1) = 0 the analysis must be modified in a manner not discussed here.
Eq. (9) for w<2) becomes

Lum = -2e(2)tu„« . (25)

As for mU), the solution may be written in the form

um{x, r, r) = a<2)(f, r) exp («:) + a<2)(f, t) exp (-ix) + f 2\x) (26)

where fVi) (x) is a particular solution of (17) with n = 2. The transform f(J'(w) satisfies
Eqs. (18) and (19) for n = 2. The continuity requirements (12)—(15) give

[/<2,]= -[a<2>]~ [a(2)],

[/(2)'] = -i[aw] + i[aw] - [af(1)] - [«f<,)], (2?)

[/<2>"] = [a<2)] + [a<2)] - 2i[a{w] + 2i[ar\,

Um'"} = i[a<2)] - t[a<2)] + 3[ar(1>] + 3[ar(n],
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Substituting (27) into (19) and (20) for n = 2 gives

[«/"] - [«fU,(0, t)] = -*(2)®„(-l)/2, (28)

[a<2>] a [a<2,(0, r)] = (—1) —®0'(—1))/2.

We now examine Eq. (10) for w<3). In order for w<3> to be bounded in x, quantities
on the right-hand side that give rise to secular terms in x must be eliminated. Thus

aTT(1) - 4arr(1) + aa) - 3aaa)|a(1>|2 = 0. (29)

(The complex conjugate of this equation is also asserted.) The corresponding initial
conditions (derivable from (4)) and jump conditions previously stated are

a(I)(f,0) = ara'(f,0) = 0, (30)

[aa'(0, r)] = 0, (31)

[<"(0, r)] = -e(2,w>o(-l)/2. (32)

Now, writing the complex constant — e<2)tf>0(—1)/2 in its polar form, namely

— 6<2'i2)0(—l)/2 = A exp (—id) (33)

where A and 8 are real, we observe that the solution to the problem (29)-(32) may be
expressed as

aU)(f, t) = a(f, r) exp (-id) (34)

where a(f, t) is real. The problem for a(f, r) consists of

arr — 4 an + a — 3 aa3 = 0, r>0, — «=<f< 00, (35)

o(r, 0) = aT(t, 0) = 0, (36)

[a(0, r)] = 0, (37)

[ar(0, t)] = A. (38)
By multiplying (35) by % and ar, simplifying, and setting ut = a, u2 = a{ , u:l = ar , we
may rewrite the equation for a in the form of a quasilinear system

M(u) = pT(t, r, u) + gf(f, t, u) + n(f, r, u) =0 (39)

where

V

Ml

0

U32 + 4 U22 + U? — f all*

— 2 u2u3

0 — u3

M, —U2n =
— 8m2m3 0

W + 4m22 — Ui + faMi4, . 0

U = (Ul , M2 , Ms).

We consider the domain

G = {(r, r)||f| < 2t, t > 0J
and let x be an arbitrarily smooth test function in R C G such that x vanishes identically
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outside R. Multiplying (39) by x and integrating over R leads to

// xM(u) d? dr — 0. (40)

Divide R into two regions Rt and R2 which are separated by the curve of discontinuity
C (r = 0):

Rt = f(f > t) I o < f < 2r, t > o| r\ R,
Ri = {(f, t) I —2r < f < 0, r > 0} n ft.

Thus, (40) becomes

/£ xil/(u) df rfr + JJ xM(m) df dr = 0. (41)

We now apply Gauss' theorem separately to each of the integrals in (41) since u is smooth
in R, and R2 . Consequently

// (~PXr - qxt + nx) dr + / x(pw, + g«f) ds
Je/e,

+ [[ (~PXr ~ qx{ + nx) cl$ dT + f x(pnT + g«r) = 0, (42)
•Mr 2

where di?, and dft2 are the boundaries of Ri and R2 respectively and n, and n{ represent
the r and f components of the outer unit normal to the boundaries of the relevant domain.
We assume the existence of a generalized solution u (see [7], for example), i.e. u satisfying
the equation formed by setting the sum of the first and third integrals in (42) equal to
zero. Thus (42) becomes

/ x(pn, + qnt) ds + / xiw* + Q.nt) ds = 0. (43)
JdRx *>dR2

Since x vanishes identically outside R and since ux , u2 , and u3 must be bounded, then

£ xOMp] + <t>(W\) ds = 0 (44)

where C is the curve of discontinuity, 4>r and </>r are the direction cosines of the normal
to C, and [p], [g] are the jumps in the values of p and q across C. Since x is arbitrary,
<t>r[p] + <t>{[q] = 0. On C, 4>r = 0 and consequently [g] = 0 across C. Hence

[«,] = 0, [w2u3] = 0,

[w32 + 4m2" — u{ + f olui4] = 0.

Using the jump conditions (37) and (38) and the definition of u, , j = 1, 2, 3, gives

ar(0+, t) = — ar(0", r) = A/2, (45)
ar(0 + , r) = a7(0", r) = 0. (46)

The problem (35)-(38) for a(f, t) is now rewritten as the quarter-plane problem:

aTT — 4aff + a — 3aa' = 0, 7 > 0, f > 0,

a(f, 0) = aT(f, 0) = 0, (47)
a(0+, r) = k, af(0+, r) = .4/2,
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where k is a constant. A generalized solution to (47) can be written in the form

«(f. T) = B(W{T ~ | f), f 5^ 2T,

where

B" — \ B + I aB3 = 0, (48)

£(0+) = Kj B'( 0+) = A/2, (49)

//(/) = 1 for x > 0,

= 0 for x < 0.

The solution to (35)-(38) then becomes

a(X, r) = B(|f|)H(r - I |f|), f * 2r. (50)
We multiply (48) by B' and integrate. Applying the condition (4) which implies #(°°)
= B'( oo) = 0 gives

{B')2 - \ B2 + f aB4 = 0. (51)

For a — — 1, Eq. (51) has no bounded solution. We now restrict the analysis to a = 1
for which the structure is imperfection-sensitive.

Evaluating (51) at f = 0+ and using (33) and (47) gives

(i «<2>„(1,|)2 = (a(0, r))2 - § (a(0, t))\

We introduce the displacement measure a = Sa(0, r) (note th'at by (46) a(0, t) is inde-
pendent of r); then

( (2)\2 _ 4 /V 3(J4
U j ~ K(1)|2U2 254

Hence, keeping terms of order <52 in (7), we obtain

(1 - \)a2 - f <74 = | XYIWT- (52)
Eq. (5) has been used to eliminate <5. The dynamic buckling load \D is found by maximiz-
ing X with respect to cr. Thus

\D = (1 + Vty8e |U>o(l)i)_I (53)

and the critical value <jd of a is aD = (f (1 — A/)))172. The corresponding solution of (48)
is

B/rt = 2V/3 (2 + V2) exp (-f/2) >
3[1 + (3 + 2 V2) exp (-f)]'

Hence, from (6), (23), (34), and (50) the dominant term for the deflection as « —* 0,
X —> l- is

W* a _ 4(2 + V2)(6(l - \d))W2H((2(1 - Xp))'/2(* - i |x|)) exp (- \x\ ((1 - X„)/2))'/2
1 ' ' 3[1 + (3 + 2 V2) exp (- |z| (2(1 - X„)))1/2j

• cos (x — 6), (55)

where 8 = arg ®0(1).
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Concluding remarks. We recapitulate the key results. The dynamic buckling
load \D is given by

x" ~ T+ VI e |»0(lT| (56)

where

®0(1) = J iv0(x) exp (ix) clx, and |tf0(a*)| < M exp (—f) |x|), (M, f3 > 0).

The corresponding deflection is given by (55). A comparison of (56) with the static
buckling load X» found in [6] reveals that

X„ = X, . (57)

This is a rather surprising result since previously reported analyses for modal imperfec-
tions [4] and for a finite column with arbitrary imperfections [5] produced the result
((1 — Xc)/(1 — X.))3/2 = v/ 2 XB/XS . However, in these analyses the condition imposed
on the deflection, w say, was boundedness rather than w —» 0 as |.t| —> °°. Also, the
conservative value for Xc may be a result of the generalized nature of the solution.
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