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ON WAVE PROPAGATION IN A DEFORMED
MOONEY RIVLIN MATERIAL*

By M. HAYES (University College, Dublin)

Summary. For a homogeneously deformed incompressible Mooney-Rivlin material
it is shown that there is a universal connection between the speeds of propagation of
the plane transverse waves which may propagate in any direction in the material. Such
connections are not valid, in general, for incompressible materials.

1. Introduction. According to the classical linear elasticity theory of materials
which are not internally constrained, it is well known that three plane waves may prop-
agate in any direction n in the material. If the phase speeds of the three plane waves
propagation in the direction n are denoted by c«(n), a — 1, 2, 3 it has been shown [1, 2]
that there is a universal connection

{ca2(n) + ca\m) + c„2(p)| = X !c«2(r) + c«2(s) + c«2(t)} (1.1)
a = 1 a ~ 1

relating the wave speeds. Here (n, m, p) and (r, s, t) are any two orthogonal triads of
directions. It was pointed out in [2] that connections of this sort do not hold in general in
materials which are subject to internal constraints such as incompressibility, or inexten-
sibility in a particular direction. This is due to the fact that the acoustical tensor involves
n in a quadratic way for unconstrained materials, whereas if the material is incompres-
sible, for example, the acoustical tensor involves n in a quartic fashion.

The purpose of this note is to point out that for a particular incompressible isotropic
elastic material, the Mooney-Rivlin model, a universal connection of the form of (1.1)
does exist between the wave speeds in a specimen of the material when it has been sub-
jected to a pure homogeneous deformation. Furthermore, this universal connection
involves directly the strain-energy density of the material in the state of homogeneous
deformation.

2. Universal connections. When the generic particle initially at X in a virgin
Mooney-Rivlin material is displaced to x, the strain-energy per unit volume is IV, given
by

2W = C(I - 3) + D(II - 3), (2.1)

where C and D are constants and**

/ = Bu , 2II = 12 - B,,BtI . (2.2)

* Received December 8, 1975.
** Unless stated to the contrary, repeated suffixes are summed over 1, 2, 3. All equations are referred

to Cartesian coordinates Xi.
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Ba are the components in the rectangular Cartesian coordinate system x of the left
Cauchy-Green strain tensor given by

B,, = (dXi/dXA)(dXj/dXA). (2.3)

Since the material is incompressible, det B = 1.
When the material is in a virgin state it is subjected to a pure static homogeneous

deformation x« = \aXa(a = 1, 2, 3; no sum) with AA2A3 = 1. Superposed 011 this is an
infinitesimal time-dependent deformation i, = x, + ««,•(£,■ , t), where « is assumed so
small that squares and higher powers of e may be neglected in comparison with first-
degree terms. In view of the incompressibility constraint,

dUi/dXt = 0. (2.4)

Ui = a, exp i(jijXj — ct), a:n, = 0, a,a, = w= 1, (2.5)

this represents a plane transverse wave polarized along a, propagating in the direction
n with speed c.

It has been shown [3] that two transverse plane waves may propagate in any direction
n in the deformed material. The amplitudes of these waves are at right angles to each
other and to n. They are the proper vectors, other than n, of r(n) where

r*„(n) = Sk<,nQSimni - B,,n,n,Bkm . (2.6)

Here B is the strain tensor corresponding to the static homogeneous deformation and is
given by

B,, = X|"<5,jt),! + X2"5,25,2 + X3~5,35irt , (2.7)

with corresponding invariants I, II given by

7 = x,2 + x22 + x32, 77 = x,2x22 + x22x32 + x;i2x,2. (2.8)

Furthermore, the speed c(n; a) of the wave propagating in the direction n with unit
amplitude a is given [3] by

pc2(n; a) = (C + 7Z))5, — DB,

+ D?iiSimamnkSk,a,

- DBr,nrn,Bkmakam , (2.9)

where p is the constant density of the material. Thus if b is the unit amplitude of the other
wave propagating in the direction n, then it follows that

pc"(n; a) + pc2(n; b) = 2CB,+ Z)j7£i,n,nJ — (2.10)

since n, a and b form an orthogonal triad of unit vectors.
If, for brevity, the phase speeds of the two waves propagating along n are denoted

by c„(n), a = 1, 2, then it follows from (2.10) for the orthogonal triad of directions
(n, m, p) that

P
a = 1
Z (c«» + ca2(m) + ca2(p)S = 2CI + 2DII. (2.11)
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The right side of this equation is independent of n, m and p. Thus for any two orthogonal
triads (n, m, p) and r, s, t) there is the universal connection

X) 'ca2(n) + c„2(m) + c„2(p)j = X) ic«2(r) + ca2(s) + c«2(t)(. (2.12)
a = 1 a = 1

A corollary of (2.12) is that if n, m, r and s are any coplanar unit vectors with nm
= r s = 0 then

X) !c2(n) + c2(m)j = X) lc2(r) + c2(s)(. (2.13)
a = 1 a = 1

By use of a counterexample it was shown in [2] that such universal connections do
not hold in general for incompressible materials. Thus the Mooney-Rivlin material is
special in this respect.

Suppose now that two identical virgin specimens of Mooney-Rivlin material are
subjected to two different homogeneous deformations (Xj , X2 , \3) and (Xi , X2 , X3) (say),
in an obvious notation. The axes of the deformation are common. Let the phase speeds
in the direction n in the two materials be denoted by c„(n) and ca(n), a = 1, 2. Then
from (2.1) and (2.11) there follows the universal connection involving the two different
basic homogeneous deformations:

4{W(3l) - W(X)}

= P X l(Ca2(n) - ca2(n)) + (c02(m) - ca2(m)) + (c„2(p) - c„2(p))}, (2.14)
a = I

where W{X) and W(5.) are the strain-energies per unit volume for the two bodies.
Of course in the particular case when X, = X2 = X, = 1, all the transverse waves

travel with the same speed c0 (say) given by

pc,~ = (C + D). (2.15)

Thus a particular case of (2.14) gives

4H'(^) = p X |ca2(n) + ca2(m) + c02(p)| - 6pc„2. (2.16)
a = 1

3. Concluding remarks. It has been pointed out in [2] that the main value of
universal connections of this sort is that they provide a check on his results for the
experimentalist.

Currie and Hayes [3] showed that for homogeneously deformed Mooney-Rivlin
materials there is no essential difference between the manner of propagation of infinites-
mal and finite-amplitude plane waves. For any direction n in the deformed material,
two finite-amplitude transverse plane waves may propagate without change of shape,
and their speed of propagation is the same as the speed of the corresponding infinitesimal
waves. Thus in the universal connections obtained here it is immaterial whether in-
finitesimal plane waves or finite-amplitude plane waves are considered.
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