
QUARTERLY OF APPLIED MATHEMATICS 271
OCTOBER. 1976

GURTIN-TYPE PROPERTIES ASSOCIATED WITH WAVE PROPAGATION
IN A VISCOUS, HEAT-CONDUCTING GAS*

By

J. C. MURRAY
University of Southampton

Summary. Variational and reciprocity principles of the Gurtin type are established
for the linear initial-boundary value problems associated with small-amplitude wave
motion in a viscous, heat-conducting gas.

1. Introduction. The method of time convolutions due to Gurtin [1, 2, 3] has been
employed by several authors in the recent literature [4, 5, 6] to derive variational and
reciprocity principles associated with the classical heat and wave equations. The initial-
boundary value problems investigated apply to a wide range of phenomena in continuum
mechanics. In the context of the acoustic problem for a gas, however, the classical
wave equation is valid only under the assumption that viscous dissipation and heat
conduction are neglected. It seems from the literature that these effects have not been
taken into account in the various formulations to date.

In this paper an initial-boundary value problem is formulated which governs the
small-amplitude motion of a viscous, heat-conducting gas. Variational and reciprocity
principles of the Gurtin type are established for this general problem. These Gurtin-type
principles are simplified further by the methods developed recently by Herrera and
Bielak in [6]. Moreover, it is shown that the general problem can be replaced by two
initial-boundary value problems. Variational and reciprocity principles are also given
for these latter problems.

2. Formulation of the general problem. A viscous heat-conducting gas occupies
the open bounded domain D of the n-dimensional Euclidean space R". The closure
and boundary of D are denoted respectively by D and 3D, with x = (.T| , • ■ ■ xn) denoting
a point in D. The undisturbed, uniform gas pressure, density and temperature are
given by p0 , p0 , Tn and the specific heats and thermal conductivity are given by C, ,
Cv and k.

The gas undergoes a small-amplitude motion initiated at time t = 0 in which the
velocity, temperature, pressure and density distributions are given by q = (ui , • • • u„),
T, jj and p respectively. The fractional changes in density and temperature are s and 17,
with p = p0(l + s) and T = T0(l + ri). If the n-dimensional gradient and Laplacian
operators are denoted by V and A, then the governing equations of continuity, momen-
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turn, energy and state have the form (e.g. [7])

f)<!
V-q =-- + /, (x, t) E D X [0, co), (2.1)

Po |y = — Vp + juAq + ~ V0, (x, t) E D X [0, co), (2.2)

§f - (7 - 1) ft = + g, (x, i)£DX [0, co), (2.3)
0=V-q, (®, 0 G X [0, co), (2.4)

V = Po(l + S + 1?), (x, t) E D X [0, co), (2.5)

where ft is the viscosity coefficient, y = Cv/C, and v' = K/pnC, . We also allow for the
possibility of mass and heat sources by introducing the prescribed source functions
j(x, t) and g{x, t).

The initial conditions imposed on q, s and r? are

q(x, 0) = q0(.x) = {uu , • • • , w„„), x E D, (2.6)

s(x, 0) = s0(x), X E D, (2.7)

t]{x, 0) = jj„(a:), x E D. (2.8)

On the boundary dD, which we consider as the disjoint union of dD{ , i = 1, 2, 3, we
impose the following conditions:

q = Q(z, t) = (t/i , ■ • • , Un), (x, t) E dD X (0, co), (2.9)

v = U(x, t), (x, t) E dD, X (0, co), (2.10)

= U(x, t), (x, t) E dD2 X (0, ®), (2.11)

~ + k(x)v = /,(*, t), (x, t) E dD, X (0, »), (2.12)

where q0 , s0 , , Q, , i = 1, 2, 3 and k are prescribed, with the outward normal to
dD denoted by v. All functions appearing above and in what follows are real-valued
functions of position x and time t defined on D X [0, co) and we will assume that they
are sufficiently well behaved and dD sufficiently smooth to justify the operations in
the subsequent analysis.

Before proceeding to the derivation of variational and reciprocity principles, we
require the following definitions: for two scalar functions a(x, t) and b(x, t) the convolu-
tion is defined in the usual way by

a*b = f a(x, t')b(x, t — I') dt'. (2.13)
Jo

If a =(«!,-••, an), b =(&,,••■,&„) then

a* b = X) a'*bi ■ (2.14)
i = l

The algebraic properties of the convolution are well known and need not be stated here.
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3. A variational principle. To derive a variational principle which characterizes
the initial-boundary value problem (2.1)-(2.12) it is convenient, following Gurtin [1],
to replace the above problem by an equivalent boundary-value problem. This boundary-
value problem is obtained by integrating Eqs. (2.1)-(2.3) with respect to time and
using the initial conditions (2.6)-(2.8). The resulting set of integrodifferential equations is

s - So + l*(V-q) - l*f = 0, (x, t) E D X [0, ®), (3.1)

Po(q - q«) = -l*(Vp) + Ml*(Aq) + | 1*(V0), (x, t) E D X [0, »), (3.2)

n - no - (t - 1)(« - so) = /l*(Ar,) + l*g, (x, t)EDX [0, ®). (3.3)

By using the algebraic properties of the convolution it is not difficult to show that
Eqs. (3.1)-(3.3) are equivalent to (2.1)-(2.3) together with (2.6)-(2.8). The equivalent
boundary-value problem then consists of Eqs. (3.1)-(3.3) together with (2.4), (2.5)
and the boundary conditions (2.9)-(2.12).

Let q, p, s, i), 6 and their spatial derivatives belong to a function space L. For each
/ E [0, ro) define the functional C7, (q, p, s, r;, 6) on L by the relation

U,(q, p, a, v, 6) = 5P0 / (q - 2q„)*-q dr
J I)

+ f l*(Vp)*-q dr - r f l*(V0)*-q dT
J/) O J j>

[ l*(Vu,)* ■ (Vw,-)
7=1 Jl)2 f"1 dr

+ f (1 */*/) — s*p + s„*p) dr — ̂  f 1*0*0 dr
•'/) O J D

+ po [ (1 + 5S + 7j)*s dr
*' D

- ip<S(7 - 1 r1 I 1*(Vtj)* • (Vv) dr -Po f s0*i, dr
Jd J d

- Pn(y — 1) 1 f (hv — Vo)*V (It + P»(y — 1) 1 [ dr
J D J D

- n f l*(q -QF-P da - [ l*(vQ)*p da
J 01) VV 'fdD

+ 7. f l*(v-Q)*0 da 4- p»v'(y - l)"1 [ l*(v - /,)• p- da
O J 0D *' dD i VV

+ p,S(7 - I)"' f 1 *f2*V da
J dD 2

+ Po"'(7 - 1)"' I 1 *(fs - 5kv)*v da, t G [0, 00); (3.4)
JdDz

then
dU,(q, p, s, 77, 6) = 0 on L, t E [0, °°), (3.5)

iff (q, p, s, tj, 6) is a solution of the initial-boundary value problem ('2.1)—(2.12).
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Proof: Adopting the customary procedure of the variational calculus we find, after
using the algebraic properties of the convolution and the divergence theorem,

8U,(q, p, s, v, 6) = J (p„(q - q„) + l*(Vp) - /xl*(Aq) - f, l*(V6))*-8q dr

+ [ (1 *f + So - s - l*(V-q))*5pdr + r, I l*(V-q - 0)*86 dr
•'/> O Jo

+ [ (p<>( 1 + S + v) - />)*<5s ('r
•'/>

+ 7>o(7 — 1)"' [ ((y — l)(s — So) + /l*(Ar?)
J1)

- v + v« + dr - M f l*(q - Q)*-(—
J £>/> \

+ [ l*(v-(q - Q))*8pda - ~ f l*(v-(q - Q))*
J <)D " J dD

+ pnv'(y — 1)"' 1*0 - 5l?) r'°"

+ p0/(7 - 1)-' l*(/2 - 8V da

+ Pi>v'(y - 1)-' f l*(/3 - kr, - |j)* da, t e [0, »). (3.6)

If (q, p, s, tj, 0) is a solution of the initial-boundary value problem (2.1)—(2.12) then
the equivalent boundary value problem is satisfied and (3.5) holds. Conversely, if (3.5)
holds then, setting

op, 86, 8s, 5»j, 5u2 • • • 8u„ = 0 in D X [0, oo);

— 5q, bp, 86 = 0 on dD X [0, »); — = 0 on dD, X [0, »);
av Of

5jj = 0 on (az>2 VJ dD3) X [0, oo) and 8ut ^ 0 in D X [0, «>), we obtain

Jf (po(«, - «10) + i*(|r) - mi*(am.) - I *«, dr = 0, te [0, co). (3.7)

By the fundamental lemma of the variational calculus [1] the first of the n equations
(3.2) is satisfied. Again, by setting op, 86, 8s, <5rj, 8us ■ ■ ■ 8un = 0 in

D X [0, oo); -- Sq, 8p, 86 = 0
av

dD X [0, oo); 8tj = 0 011 dD, X [0, oo); 8r) = 0
OP

on (dD2 yj <9D3) X [0, oo) and 8u2 ^ 0 in D X [0, oo) and using the fundamental lemma
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of the variational calculus, we will obtain the second of the n equations (3.2). Continuing
in this way, all the equations (3.2) can be obtained. Similarly, with the choice <50, 5s, St]
= 0 in

D X [0, oo); <5q, 8p, 86 = 0 on dD X [0, »);
ov

dr] = 0 on dDt X [0, oo); 8i) = 0
ov

on (dD2 U dD3) X [0, oo) and Hp ^ 0 in D X [0, oo) we obtain Eq. (3.1). The remaining
field equations (2.4), (2.5) and (3.3) can be obtained by making the appropriate choice of

r) r)

86, 8s, 8t] in D X [0, oo) and — Sq, 8p, — 8r), 8t) on dD X [0, oo)
ov ov

and again appealing to the fundamental lemma of the variational calculus. Also, by
carefully choosing

d d— 5q, 8p, 86, — 8tj and 8ij on 3D X [0, oo)
ov ov

we can, in the same manner as that adopted for the field equations, obtain all the boundary
conditions (2.9)-(2.12). All the equations of the boundary-value problem 1(3.l)-(3.3),
(2.4), (2.5) and (2.9)-(2.12) are now established so that Eqs. (2.11)—(2.12) hold and
the proof is complete.

It has been proved above that a variational principle of the Gurtin type exists
which characterizes the general initial-boundary value problem (2.1)—(2.12) and for
which the initial and boundary conditions are natural. However, it has been shown
recently by Herrera and Bielak [6] that variational principles of the Gurtin type can
be simplified by reducing the number of convolutions used in the construction of the
functionals. In the present investigation we can accomplish this by introducing the
functional U, where

1*0, = U, (3.8)
Since 8U, — 0 iff 8U, = 0, the variational principle (3.5) can be restated in the same
form with U, replaced by U, . The functional U, can be found by differentiating (3.8)
with respect to time using (3.3). We obtain

0, = Jt U, = (q(/, 0)-q(z, 0 + q* q - 2q„-q(x, tj) dr

+ f (Vp)*-qdT-% [ (V6)*-qdr + % Z [ (Vu,)* ■ (Vu.) dr
J D O J D Z l=i J D

J| (i*p - s*p - p(x, 0)s(jr, t) + s0p(x, 0) dr - | / 6*6 dr

+ Pn I (s + §(s*s + s(x, 0)s(x, t) + 77*S + s(x, 0)v(x, t)) dr
J D

- hp</(y - l)"1 [ (Vt))* ■ (Vij) dr - p0 [ s0r)(x, t) dr
Jd Jd

+
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— pn(7 — 1) ' f (Hv*v + I?0, 0)r)(x, 0 — Vnvi-r, 0)
J n

+ P.,(7 - 1)"' f <J*V dr - m f (q - Q)*-:p (/<r
J/) JcJD OV

- [ (v-Q)*p da + Z f (v Q)** r/a + ]>i,v'(y - 1)"' [ („ - /,)* ^ </«r

+■ P</(7 — 1)~' [ f-2*v da + pnv'{y — 1) [ (f3 — %ky)*y da, t E [0, <*>),

(3.9)
where the dot notation is used to denote partial differentiation with respect to time.
In concluding this section we note that the variational principle associated with the
functional U, above can also be proved by proceeding in a similar manner as that adopted
for the variational principle associated with U, .

4. The reciprocity principle. Associated with the variational principle derived
above there is a reciprocity principle which can be derived in the following manner.
We write q = q' + q", p = p' + p", s = s' + s", v = v' + v", 6 = 6' + 6" where
q", p", s", 1)" and 6" satisfy the following equations:

r)s"V-q" = — , Or, 0 <E D X [0, »), (4.1)

P" ̂ 7 = ~ + - V(?"' {jc' 0 e f X [0, co), (4.2)
o t o

~ - (y - 1) ~ = V, (*, I)EDX [0, =0), (4.3)

9" = V-q", (.r, 0 G D X [0, =°), (4.4)
p" = p0( 1 + s" + „"), (.1-, t) E D X [0, oo), (4.5)

together with the initial and boundary conditions (2.6)-(2.12). The functions q', p', s', i\
and 6' are then determined by the following initial-boundary value problem:

r)s'
V-q' = — ~j + /, (x, t) E D X [0, co), (4.6)

pn = - V// + MAq' + -t W, (x, t)E Dx [0, -), (4.7)
at o

- (7 - 1) ~ = t'AV + (j, {x, t)E Dx [0, co), (4.8)

0' = V-q', (x,t) e D X [0, »), (4.9)
p' = p„(s' + „'), (.r, 0 ED X [0, »), (4.10)

q'(.T, 0) = 0, x E D, (4.11)

s'(x, 0) = 0, x E D, (4.12)
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v'(x, 0) =0, xe D, (4.13)
q' = 0, (», t) G dD X (0, <*>), (4.14)
rj' = o, (x, t) e dD, X (0, co), (4.15)

dij'/d* = 0, (x, 0 G dZ)2 X (0, co), (4.16)

(dri'/dv) + k{x)t]' = 0, (x, t) £ dD3 X (0, co). (4.17)

If (q, , Pi , Sj , i/t , 8,) and (q2 , Pi , s2 , rj2 , 82) are solutions of the initial-boundary
value problem (2.1)-(2.12) corresponding to the pairs of source functions (/<u, (/") and
(/<2\ f/") respectively, then there exists a reciprocity principle of the form

[ {(«,' + + (7 - 1 r'v/*gM} dr

= [ {(«,' + »2')*/(1> + (7 - iy'v/*gW} dr, t e [0, «,). (4.18)
Jd

Proof: Since the boundary and initial conditions are the same for both

(Qi > Pi t si > Vi i ®i) and (q2 , p2 , s2 , yj2 , 82),

we need only consider the initial-boundary value problem (4.6) -(4.17) to establish the
reciprocity principle (4.18).

The equations equivalent to (4.6)-(4.8) and (4.11)—(4.13) can be written in the form

l*(V-q') = —s + 1*/, (x, t) G D X [0, co), (4.19)

p„q' = - l*(Vp') + Ml W) + I l*(VO, (x, t)EDX [0, co), (4.20)

v' - (y - l)a' = u'l*(Av') + 1 *g, (x, t) £ £> X [0, co). (4.21)

If (q,', p/, */, 8/), i-l,2 are solutions of (4.6)-(4.17) corresponding to the pairs
of source functions (/'", g{"), i = 1, 2, then from (4.20) we obtain

0= [ P„(q,'*-q2' - q2'*-qi')dr = f {- l*((VPl')*-q2' - (Vp2')*•*')
•'D JD

+ /ul*((Aq,')* -q2 - (Aq./)*■ q,') + | 1*((V0/)*-q,' - (V0,')*-q.')l dr. (4.22)

Using the divergence theorem, Eq. (4.9) and the boundary condition (4.14), we find
that (4.22) can be written in the form

0 = f l*{p/*(V -q2') - p2'*(V-q/)| dr. (4.23)
Jd

Differentiating (4.23) with respect to time and using (4.9)-(4.10), we obtain the relation

[ (8/ + W)*e,' dr = f («,' + t?2')*0/ dr. (4.24)
J d J n

With the aid of (4.9), (4.19) and (4.24) we can write
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0 = [ 1*{ d/*(s2' + „2') - d2'*(Sl' + ih')} dr
•>n

= - [ {s,'*(s2' + 7?2') - s2'*(s,' + 1)/)} dr
J D

+ f 1 *{/u)*(s2' + W) - /'2>*(s/ + r,/)] dr, (4.25)
Jd

so that

[ (s/*v/ - S2'*v/) dr = f 1 *{/u,*(s2' + „,') - /<2,*(S/ + 77,01 rfr. (4.26)
J I) J D

From Eq. (4.21) we obtain

(7-1) [ (s/*V2r - s2'*v,') dr = v' f l*(Vl'*(AV'2) - ^'*(AV,)) dr
Jd J D

+ f - W") dr. (4.27)
•>d

Again, using the divergence theorem together with the boundary conditions (4.15)-(4.17)>
we find

(7-1) f (s/*7J2' - «/*„/) dr = [ l- W") dr. (4.28)
J d Jd

Combining (4.26) and (4.28) we obtain, after differentiating with respect to time, the
reciprocity principle

f {(«.' + v/rr + (7 - irvv2)i ^
J D

= [ {(»,' + V2')*fU) + (7 - irW"! dr, t e [0, co). (4.29)
J D

Finally we note two special cases of (4.29). First, in the absence of heat sources g'" = 0,
i = 1, 2 and the reciprocity principle (4.29) reduces to

f («,' + dr = [ (s2' + „2')*/(,) dr, t e [0, »), (4.30)
Jd Jd

which is similar to the reciprocity principle obtained in [4] for the classical wave equation.
Eq. (4.30) implies that such a reciprocity principle also holds for a viscous, heat-con-
ducting gas in the absence of heat sources. Again, in the absence oi mass sources /(l> = 0,
i — 1,2 and the reciprocity principle (4.29) reduces to

[ »,'V2) dr = [ V2'*g(,) dr, t e [0, »), (4.31)
Jd «d

which has the same form as the reciprocity principle associated with the heat equation
so that this type of classical reciprocity principle will also hold in the case of a viscous,
heat-conducting gas in the absence of mass sources.
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5. The initial-boundary value problems for (s, 77) and q. In the case of wave propaga-
tion in an inviscid, non-conducting gas the problem consists of solving the classical
wave equation for a single potential function (usually the velocity potential function
or s) subject to suitable initial and boundary conditions. The velocity distribution is
then obtained directly from the potential function. When viscous and heat conduction
effects are taken into account, however, the problem associated with the classical wave
equation is replaced by an initial-boundary value problem which involves both s and 77.
The velocity distribution is then found by solving an initial-boundary value problem
for q.

The equations governing s and rj are obtained by using Eqs. (2.4) and (2.5)
to eliminate q. We find

dt ~ {y ~ 1} ft = /Av + g' {Xl l) G ° X (°' m)' (5J)

r)2S 4 r)<!
Po = Pa&(s + v) + | MA Jt + F, (x,t)EDX (0, oo), (5.2)

where F = p0(df/dt) — 4/*A/. The initial and boundary conditions on tj will again be
given by (2.8) and (2.10)-(2.12) respectively. The initial condition on s is given by
(2.7) and we impose an appropriate boundary condition on s of the form

s = S(x, t), (x, t) G 3D X (0, 00), (5.3)

where S is prescribed. An initial condition can be imposed on ds/dt by using (2.1).
This is

| (x, 0) = /„ , x E D, (5.4)

where l0 = f(x, 0) — V-q0 •

The subsequent initial-boundary value problem for q has the form

P(1 ~ = ,uAq + H(z, 0, (x, t)E DX (0, »), (5.5)
at

q(.c, 0) = q„(.r), x G D, (5.6)

q = Q, (x,t) G dD X (0, «), (5.7)
where H(x, t) (prescribed by the solution of the initial-boundary value problem for
(s, 7])) is given by

H = - pu V(s + v) + | v(/ - ~). (5.8)

In the following two sections we will establish variational and reciprocity principles
associated with the above initial-boundary value problems for (s, tj) and q.

6. Variational principles. To characterize the initial-boundary value problem for
(s, ri) by a variational principle we replace it, as in Sec. 3, by an equivalent boundary-
value problem. This will consist of the field equations

Vo (7 - 1 )(s - so) = /1*(Aj?) + 1*?, (x, t) ED X (0, co), (6.1)
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p0(s - s„ - l0t) = p0t*(A(s + v)) + | til*(As)

— | v(As0)t + t*F, (x, t) E D X (0, oo) (6.2)

together with the boundary conditions (2.10)-(2.12) and (5.3). It is convenient in what
follows to replace Eqs. (6.1) and (6.2) by the equivalent pair of equations

!*(„ - (7 - l)s) - v't*(Arj) = , (x, 0 E D X (0, co), (6.3)

A* + l's - - p.l'M

nl*(As) = G2 , (x, t) G D X (0, oo), (6.4)

V

4
3

where

Gi = t*(j + (?)0 - (y - l)s0)t, (6.5)

c2 = Po(so + lot) - I n(As0)t + t*F - -7 Vol + —-T^-poSot - I*(j- (6.6)
6 V V V

The variational principle associated with the above system of equations can be stated
in the form: Let s, rj and their spatial derivatives belong to a function space M. For
each f G [0, ) define the functional V, (s, j,) on M by the relation

V,(S, v) = I v' jD t*(Vv)*-(Vv) dr + | £ l*v*v dr

- (y - 1) f 1*S*V dr - [ G*v (It + | ~ ^ [ S*S dr
J i) J i) 2. J) o J j)

+ k (y ~ l)2 I 1 *s*s dr - v-^~—f G2*s dr + rv'(y' - 1) [ t*(Vs)*-(Vs) dr
2j J ]) Po Jo 2 Jd

+ \ M/(7 ~ I l*(Vs)* ■ (Vs) dr - v'(y - 1) [ t*(s - S)* ^ da3 p„ Jj, J;,i, du

- ̂ ^ f 1*(S - S)* f da -v' f t* (V - /,) da - / f t*f*r, da
3 p0 •'ao OV Jul), 0V * dD 2

+ / [ t*Qkr,*r, - /,*ij) da, / G [0, »); (6.7)
•'o/j,

then

87,(8,11) = 0 on A/, I G [0, 00), (6.8)

iff (s, tj) is a solution of the initial-boundary value problem (2.7), (2.8), (2.10)-(2.12)
and (5.1)-(5.4).

Proof: We proceed in the same manner as in Sec. 3 to find, after using the divergence
theorem,
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SV,(8, v) = f (l*(v - (7 - 1» - v't*(At,) - 6',)* 8y dr
Ji>

+ ——f (pus + ——7-^p0l*s — G2 — 7— - p„t*(As) - ^ fil*(As)] 8s dr
Pq " D \ V V O J

- " L,,<s - s>*(s5s)d- - Li,(s - S)*(lis)

/ J t*(r, - /,)*(!; Sv) da + / £ t*(^ - /2)* 8y do
*

+ / \iD <*(+ kr, - U) Sr, da, t e [0, 00). (6.9)

The rest of the proof follows along similar lines as that in Sec. 3. By the appropriate
choice of 8s, 8-q in D X [0, ®) and (d/dv)8s, (d/dv)8r) on 3D X [0, °°) we can, using the
fundamental lemma of the variational calculus [1], recover all the equations characterizing
the initial-boundary value problem for (s, 77). For brevity the details will be omitted.

As in Sec. 3, the above variational principle can be simplified by the method discussed
in [6] with the introduction of the functional V, where

t*V, == V, (6.10)
The variational principle associated with V, is the same as (6.8) with V, replaced by
V, . The functional V, is obtained by differentiating (6.10) twice with respect to t.
We find

vt = &' f (Vv)* ■ (Vv) dr + i f (r)(x, 0)v(x, 0 + 77*77) dr
J D J D

- (7 - 1) [ (s(x, 0)y(x, t) + s*i) dr - [ ((t)0 - (7 - 1)so)ti(z, t) + g*77) dr
J D *>D

+ \   — [ (2s(x, 0)s(x, 0 + s*s) dr
Z ptl

+ 5(7 - I)2 [ (s(x, 0)s(x, t) + S*S) dr
J1)

jf (p0s„s + F*s - ^ g*s

(jo - | mAs0 - ^r1 - r^?>oSo)sO, 0) dr

+ W(y - 1) f (Vs)* -(Vs) dr

+ f—— f «Vs(x, 0))-(Vs(x, 0) + (Vs)* • (Vs)) dr
o /?o Jd

- ,'(7 - 1) f (s- S)* fda-\ M/(7 ~ 1} f f(s(x, 0) - S(z, 0)) -(f~^
J 3D OV O Po JdD \ OV

+ (s - S)* ~) da-v' f 8f- (77 - /,) da - / [ da
OV/ JdDi VV JdD 2

+ v' [ (|fc7?*7? - /3*7)) da, t G [0, 00). (6.11)

Po

+ (/o
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Next we establish a variational principle which characterizes the initial-boundary
value problem (5.5)-(5.7) for q. This initial-boundary value problem is similar to the
heat conduction problems studied in [1], [5] and [6] and the appropriate Gurtin-type
functional required for a variational formulation is W,(q) where

7<(q) = E f l*(Vw,)*• (Vu<) aIt + 5Po I (q - 2q„)*-q t/r
i = i J i) Jn

- [ H*-q dr-vf l*(q - Q)*-^da, t £ [0, »). (6.12)
JD ''od dv

The functional W, (q) is defined on some function space N and the variational principle
can be stated in the form:

5W,(q) = 0 on N, t £ [0, °°). (6.13)

iff q is a solution of Eqs. (5.5)-(5.7). The simplified functional if,(q) corresponding
to Wi (q) is given by

l*tf«(q) = W, , (6.14)
so that on differentiating (6.14) with respect to time we find

Tf,(q) = X f (Vw,)*■ (Vu,)cIt + [ (q(x, 0)q(x, t) + q*q - 2q„q(x, t))dr
i = i Jd J d

- [ (H(x, 0) -q(/, t) + H*.q)dr - n [ (q - t £ [0, »). (6.15)
J I) JdD VV

The proof of this latter variational principle (6.13) or the equivalent variational
principle associated with TU,(q) can be carried out in the same manner as that in Sec. 3.

7. Reciprocity principles. To derive a reciprocity principle associated with the
initial-boundary value problem for (s, -q) we proceed as in Sec. 4 and set s = s' + s",
V = v' + v" where (s", r\") satisfies the equations

Hi ~(7 ~ 1} fr= (r-0 e D x (0'oo)' (7-1}
rfv" 4 Jo"

p„ ~2 = pMv" + S") + | MA (x, 0 E Dx (0, co), (7.2)

together with the initial and boundary conditions (2.8), (2.10)-(2.12) and (5.3)-(5.4).
The functions s' and t\ then satisfy the initial-boundary value problem

- (7 - D Yt = (/' ()£°x (0, »), (7.3)

r)V 4 r)<?'
p„ ~ = p„A(i,' + «') + | mA -- + F, (x, t)EDX (0, co), (7.4)

s'(x, 0) = 0, xED, (7.5)

v'(x, 0) = 0, xE D, (7.6)

a' = 0, (x, t) EdDX (0, co), (7.7)
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V = 0, (x, o G dD, X (0, »), (7.8)

= 0, (/, 0 G dD2 X (0, »), (7.9)

^ + = 0, (X, i) e ai)3 x (0, »). (7.10)
av

In the appendix a uniqueness proof is given for the initial-boundary value problem
for (s, ri) so that the reciprocity principle can be stated in the form: if (s/, 17/), i = 1,2
are the solutions of (7.3)-(7.10) corresponding to the source pair (FU), (/u) and
(Fm} gm) respectively, then

jf - 2? „<»>) + 2". (7 _ i)-1,,'*^>} dT

= jf - 2<i + 2° (7 _ 1)" VV "} dr, t G [0, »). (7.11)

Proof: The system of equations equivalent to (7.3)-(7.6) is

- (7 - IK = v'l*(Av') + 1 *9, (X, t)GDX (0, CO), (7.12)

PoS' = Po<*(A(V + «')) + | m1*(As') + t*F, (/, 0 G D X (0, 00). (7.13)

Using the boundary condition (7.7) together with the divergence theorem we obtain
the relation

f \pnt*(s2'*(As/) - s1'*(As2')) + | m1*(s2'*(As,') - Sj'*(As2'))| = 0. (7.14)

From (7.12) and (7.13) we have

P08' = p0t*(As') + | Ml*(As') + /*F + ^ 1*(„' - (7 - 1)S') - 22 ^

(x, 1) E D X (0, 00), (7.15)

so that using (7.14) and differentiating with respect to time we obtain

J |l*(s/*F<2> - s2'*Fm) - 2? i*(s,'*gm - s2'*glu)

+ -7 WW - «»""1J.')1 dr = 0. (7.16)

Again, using the boundary conditions (7.8)—(7.10), Eq. (7.12) and the divergence
theorem, we obtain the relation

(7-1) f WW - v/W) dr = [ l*(vi'*g'2) - v2'*9m) dr. (7.17)
Jjj Jo

Combining (7.16) and (7.17) and differentiating with respect to time, we find

jf _ 20 + PS> (T _ 1)-VV«} dT

= jf {S2'*(Fa) - 25 ff<») + (7 - 1)-VV1'} dr, < G [0, co). (7.18)
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As in Sec. 4, we note special cases of the reciprocity principle (7.18). If heat sources
are absent then <7(,) = 0, i = 1, 2 and the reciprocity principle has the form

f s/*F(2> (It = [ s/*Fw (It, t e [0, oo), (7.19)
J I) J I)

which is similar to the reciprocity principle (associated with fractional density changes)
obtained in [4] for the classical wave equation. The source function, however, in this
case is p0(df/dt) — |uA/. If, further, viscous effects are neglected then F = p0(df/dt),
Eq. (7.4) is replaced by the classical equation

p() = p» As' + Po ft , (*, 0 G fX (0, cc), (7.20)

and the reciprocity principle reduces to

f s/*/(2> dr = f S2'*/m (It, <E[0, oo), (7.21)
Jn •'n

which is the same as that obtained in [4], Again, if the source functions / and g are
chosen such that p0(df/dt) — |jtA/ = {v«/v')g then the reciprocity principle (7.18)
can be written

[ th'*gw (It — f rl2'*gU) dT, t £ [0, oo). (7.22)
" D J I)

This latter statement of the reciprocity principle has the same form as Eq. (4.31) which
was obtained for the general problem with / = 0. Also, if the source functions / and g
are chosen such that F = 7/(7 — l)(p0/p')g then the reciprocity principle (7.16) has
the form

[ (8/ + Vi')*g'2> Ch = f (s/ + dT, t e [0, ®). (7.23)
«'/> J1)

f (s/ + Vl')*F{2) (It = f (s2' + rh')*Fm dT, t e to, »). (7.24)
J D J1)

The forms of the reciprocity principle given by Eqs. (7.23) and (7.24) are similar to
that given by (4.30).

Finally, we will derive a reciprocity principle which is associated with the initial-
boundary value problem for q. We set q = q' + q" where q" satisfies

PoW/dt) = /uAq", (x, t) EDX (0, 00), (7.25)

together with the initial and boundary conditions (5.6) and (5.7). The initial-boundary
value problem for q' can be written as n initial-boundary value problems for u', i =
1, • • • 11. These are

p0(du//dt) = fiAu/ + Hi , (x, t) E D X (0, oo), i = 1, • • • n, (7.26)

Ui{x, 0) = 0, x G D, i = 1, • • • n, (7.27)

u/ =0, (x, t) G dD X (0, 00), i = 1, • • • n, (7.28)
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where H = (//, , • • • //„). As before the reciprocity principles can then be stated in
the form: if u/U), i = 1, • • • n, are the solutions of the initial-boundary value problems
(7.26)-(7.28) associated with the source functions Hxl", i = 1, • • • n, j = 1, 2 then

[ Ui'w*H,w (It = [ u/(2>*H/v dr, < G [0, oo), t = 1, ... , n. (7.29)
J D J D

Proof: The system of equations equivalent to (7.26) and (7.27) is

paUi = ixl*(AUj) + 1 *Hi , (x, t) G D X (0, oo), i = 1, ■ • ■ n. (7.30)

By using the divergence theorem together with the boundary condition (7.28) and
differentiating with respect to time we can readily obtain (7.29). For brevity the details
can be omitted.

Appendix. Uniqueness. The solution of the initial-boundary value problem for
(s, t]) is unique if s = jj = 0, (x, t) G D X [0, oo) is the solution of the initial-boundary
value problem obtained by setting g, F, S, l0 , s0 , vo , U , i — 1,2 equal to zero. To
obtain this result we use the positive definite function I(t) where

Kt) = &' f 1(7 ~ l)(PoS«2 + p„(Vs)-(Vs)) + p0(Vv)-(Vv)\ dr

+ hv<y [ W da, t(E [0, oo). (^4.1)
JdD 3

Differentiating (A.l) with respect to time and using the divergence theorem together
with the boundary conditions and two field equations, we find

dJ
dt v' J (y — As> + Po Al?) dr - ^ PuViiVi - (y — «»,) dr. (A.2)

After a further application of the divergence theorem and equations (5.1) and (5.3)
to the first term in Eq. (A.2) we obtain

dl _ 4v'n
dt ~ (7-1) f (Vs,)-(Vs,) dr - po [ (y, + (7 - Ds.f dr < 0, (A.3)

o Jj) Jd

so that I(t) = 0, t G [0, oo), which implies s = rj = 0, (.r, t) G G X [0, oo) and unique-
ness is proved.

Uniqueness can be established for the n initial-boundary value problems for q in
a similar manner. In this case we consider the function ./(/) where

J(t) = \ Z f (Vu,)-(Vu,) dr, t G [0, oo), (A.4)
£ i=i Jd

and use the divergence theorem together with the homogeneous initial and boundary
conditions on q to show that dJ/dt < 0 and therefore J (J) = 0, t G [0, oo), from which
uniqueness follows.
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