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-NOTES-
STABILITY CRITERIA FOR GENERALIZED MATHIEU EQUATIONS*

By E. INFEL1) (Institute of Nuctcar Research, Warsaw)

Abstract. A class of differential equations that generalizes Mathieu's is treated.
Stability criteria for solutions are obtained. The method can be applied to a wider class
of Hill equations.

In this paper we will consider the differential equation

d2 , C] + c2 cos 2x
dx~ c3 + c4 cos 2x_

y = 0, c42 < c32. (1)

For c4 = 0 it reduces to Mathieu's equation, and for c2 = 0 to one mentioned in a pre-
vious note [1]. The remarkable thing is that we will be able to find an easy way to deal
with this equation when cA 5^ 0. The method cannot be applied to the special case c4 = 0.

It will prove convenient to write (1) in the form

#;+4P+ ^ y = 0, A2 < 1, (2)jdx 1 — A cos 2x_

P = c2/4c4 , R = j(ci/c3 - c2/c4), A = -c4/c3.

If we now use the Fourier expansion of (1-Acos 2.1')"1 we obtain the Hill form of our
equation:

_cf
dx~ 4P + 4fl((l - A2yu2 + 2(1 - A2)~U2 f; a cos 2nx)

\ n = l '1

2\l/2i

y 0,

a = [1 - (1 - A2y/2]/A.

Note that each consecutive Fourier amplitude is a times the previous one. It is this
property of (3) that we intend to utilize when solving the stability problem. The method
could, in fact, be used on any differential equation having the abovementioned quality
(e.g. R R sin x, R —> R cos x, R —> R sin 2x in (2)).

Following McLachlan [2], the solutions of (3) can be showrn to be periodic functions
of x (with period ir) multiplied by exp (nx), where

sin2 (Izmtt) = A(0) sin2 (tt[P + R/(l - .42),/2],/2) (4)

and A(0) is an infinite determinant. If we denote its elements by am„ and have m go from
— 00 to + 00 from the bottom to the top of the page, and n from left to right, then

amn = 1 if m + n = 0.

amn = alm+"l/3m , m + n ^ 0, /?,„ = R/\R — (m2 — P)( 1 — .42)1/2].
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Once we have calculated A(0) we will be able to see whether our equation yields unstable
or doubly periodic solutions (p. real or pure imaginary). By inverting (4) we can find
growth rates and periods of solutions.

If for n positive we now multiply the nth column by « and subtract it from the
n + 1st, the whole upper-right-hand quarter of our determinant becomes zero. Upon
completing similar subtractions on the left we see that

SQRT(a)

0

0

SQRT(a)

(6)

SQRT(a) =

1 - a% ,a09, - 1), 0, 

(a — a)Pi , 1 — a2/32 , a(/S2 — 1), 0, 

(a — a)03 , (a — a)03 , 1 — a2/33 , a(/S3 — 1), 0
(7)

The semi-infinite determinant that remains to be evaluated will be found as the limit
of a sequence oi N X N determinants, known to converge [2], Each of these finite deter-
minants can be further simplified by subtracting columns from right to left and taking
out factors. The final form is

SQRT(a)N = a"[n (0„ - 1)]

7i , 1, 0,  0

1,72 , 1, 0 0

o, 1,73 ,1, o - o

o, 1, 7JV

(8)

So finally

1 + a — 2a (3m ^ Ar 1 — a
7m = jz n— , m < N; yN = -y~ rr-

Otyfim — 1) a( Pm — 1)

V^O) = lim «nDn ft (w2~P)Vl/^-1
i R - (m2 - P) V1 - A (9)
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When (9) is substituted into (4) and the product formula for sin x used [3], we obtain

sin = ± \/1 + R'(P A/1 — .4"') sin lim <*ADN , P ^ 0

= ±tVR/V1 - A'2 lim aND, ,P = 0 (10)
A'—»co

Di = 7i , i?2 = 7i72 1> = Z)*-2

and this, in principle, solves the problem. Notice how the sin" term in (4) is cancelled
by a factor of the determinant.

A general stability chart obtainable from (10) would be three-dimensional with P
and R general real numbers and 0 < A < 1 (the equation corresponding to —A can
be obtained from the A equation via the transformation x —> x + tt/2). The stability
chart for P = 0 is given in Fig. 1. It is interesting to compare it to that of the Mathieu
equation. One might expect the two to at least be similar for small A. However, this
is not the case. The P = 0 chart shows only half as many instability regions as Mathieu's.
It would be easy to quote papers in the literature that use the Mathieu stability chart
for somewhat different equations. A comparison of Fig. I with the Mathieu stability
chart [2] illustrates how dangerous this is, even for small A.

Fig. 2 plots the modulus of the right-hand side (RHS) of (10) for P = 0, R = 1 as a
function of A. As R is real, ^ can only be real and lead to instability when RHS > 1.
This happens in two regions shown in the drawing: 0.9627 < A < 0.9660 and A ~
0.99971. In the first region the maximum value of the RHS is 1.00037. This particular
case of (2) arose in a physical context [4]. The instability regions and growth rates are
so small that for most practical purposes we conclude stability for (P, R) = (0, 1).

Fig. 1. Stability chart for P = 0. Unstable regions are shaded. Curves correspond to singly periodic
solutions of (2).
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10 -Ln(1-A)
Fig. 2. |RHS| of Eq. (10) as a function of ln(l — A). Instability occurs when RHS| > 1. The first two

unstable regions are indicated.
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