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A MATHEMATICAL INTERPRETATION OF LIMITED DIFFUSION PROCESSES*

By T. KANEKO {Nippon Kogaku K. K., Tokyo 140)

1. Introduction. Recently T. G. Giallorenzi et al. obtained an abnormal experi-
mental result in a diffusion process of silver ions into a glass plate [1]. The result indicated
that a maximum in silver concentration, and accordingly a refractive-index maximum,
too, were found in the glass interior when the bath of fused silver-nitrate was not stirred.
The limited diffusion process is noteworthy in the sense that it provides a simple experi-
mental means of producing low-loss optical waveguides. They suggested that this
phenomenon might result from the depletion of silver ions in the diffusion source near
the glass surface. However, the interpretation cannot be considered to be a persuasive
one, for it is not evident that the depletion produces the interior maxima. Furthermore,
a similar phenomenon, not yet sufficiently explained, in the diffusion process of copper
ions into lithium tantalate crystal was found only recently by J. Noda et al. [2], It is
the purpose of this note to give an explicit interpretation of the diffusion processes on the
supposition of interface reactions which obey the law of kinetic mass action.

2. Statement of the limited diffusion processes and solutions. Let t be the diffusion
process time, z the coordinate chosen perpendicular to the surface of the glass or crystal
plate, and C = C(t, z) the concentration of diffusing ions. Let us assume that the surface
concentration Fit) decreases with increasing process time; for example, in Giallorenzi's
experiment, this is ascribed to the depletion of silver ions in the liquid phase adjacent
to the glass surface. Consider the case in which the initial concentration is zero within
the substrate. Then we can write down the limited diffusion processes as

dC/dt = D-d'C/dz2,
C = 0, z > 0 and t = 0, (1)
C = F(t), 2 = 0 and t > 0.

Here D is the diffusion coefficient of diffusing ion and dF/dt < 0. According to the text
by Carslaw and Jaeger [3], the solution of Eqs. (1) is given in the form

C ~ 2(ttD)"* ' I '(< S) 'V2'6XP [ 4£(< - s)] 'ds- (2)

* Received May 13, 1974; revised version received November 5, 1974. The author would like to
thank Messrs. Takehana and Kazama for their kind cooperation in computing several numerical inte-
grations. He is also grateful to the referee for helpful comments.
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Let us consider whether or not the function C(t, z) has a maximum value for 2 > 0.
On differentiating both sides of Eq. (2) with respect to 2, we obtain

dC =
dz (rrDt)

Z(0L.exp (_JL) _ f dF/ds_— T zl_J\.ds.
Dt)1/2 P V 4Dt) J0 [7rD(t - s)]1/2 P L 4D(t - «)J (3)

It is seen from this equation that if dF/ds has sufficiently large negative values in 0 < s<t
or in some part of the interval, then the function C(t, z) will have a maximum value.
When phase-boundary reactions are fast and reversible, this is physically obvious; at
any time the surface concentration could be rapidly dropped to zero (or some other value)
which is less than the concentration inside (which is not zero). The total amount M of
diffusing substance in the substrate per unit cross-sectional area is given by

M = [ C-dz. (4)
Jo

Inserting Eq. (2) into Eq. (4) and carrying out the integration with respect to z, we have

U - 2(f )'".*•«» + ita (i)"! ( F'mm -,)]'»sxp ds. (5)

From Eqs. (1) and (4) we get the well-known relation

dM/dt = lim (— D-dC/dz). (6)
2—0

We see from this that the presence of an interior concentration maximum can be examined
indirectly from the time dependence of internal diffusing ions M instead of from the
concentration distribution.

Now let us consider three particular cases for F(t) in order to see more explicitly the
limited diffusion phenomenon.

Case 1: first-order surface reaction type.

— dF(t)/dt = kF(t),
hence

F(t) = C0 exp ( — kt). (7)

Here k is a rate constant and C0 is the initial surface concentration. Substitution of
Eq. (7) into Eq. (2) yields

C = ttt/j-Co exp (—kt) f exp (—s2 + u2-kt/s2) ds, (8)
W Ju

with

u = z/2(Dt)1/2. (9)

Eq. (8) may be reduced to the form easy to calculate, namely

C/Co = cos [2(kt)1/2u] ■ [exp (-kt) - EX] + sin [2(kt)1/2u]-EY, (10)

where
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EX = 7~t72- f exp (-a;2)-cos [2(kt)W2x]-dx,
(t) Jo

= (ir)_1 • X wr !sin l2^. + V/fci)M]/(xi + Vfa)
» = 1

+ sin [2(x; — y/kt)u]/{Xi — V^)}, (11)

and

i?F = • f exp (—a:2)-sin [2(fci)1/2z]-da;,
"uw

= (71-) 1 • X®i'l_c°s [6(0:^ + \/ftf)]/(»i +
»-l

+ cos [6(z< — \/fc<)]/(Xi — \/fc<)

+ cos [2(xi + A/fcOw]/(a\- + V^i)

— cos [2{Xi — \Zkt)u]/(xi — \/~kt)), for u < 3.0,

= 0, for u > 3.0. (12)

Here {«>,•} and {x,} are the Christoffel weight factors and the zeros of Hermite poly-
nomials, respectively [4]. Figs. 1 show the form of C/Ca ■ We see from the figure that a
concentration maximum is present inside the substrate for comparatively large kt. This
is in agreement with the experimental results by T. G. Giallorenzi et al. and J. Noda et al.
The total amount M is given by

M = 2 (—)1/2-C„, k = 0,
V T ' (13)

- (IF-EY(u = 0), k > 0.

Fig. 2 shows the form of M/Cn . It is seen that Mit) has a maximum value when (kt)x/i =
0.92, and for (kt)1/2 > 0.92 it has negative gradients; namely, diffusing substances flow
towards the substrate surface.

Case 2: second-order surface reaction type.

— dF(t)/dt = k-F\t),
hence

F(t) = C„-(l + Cokt)'1. (14)

Here k is a rate constant and C0 the initial surface concentration. Substituting Eq. (14)
into Eq. (2), we obtain

C = 2(tt)-1/2-C0- f [1 + C0kt( 1 - w2/s2)]-1 - exp (-s2)-ds. (15)
Ju

The form of the function C is shown in Fig. 3. We see from the figure that a concentration
maximum is present at the substrate interior in this case, too. The total amount M is
given by
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Fiq. 1. Diffusion accompanied by the first^order surface reaction. Numbers on curves are values of kt.

M = 2(D</7t)1/2-Co , k = 0,

_ , .r,/V D/Cpk (.Dt + D/C0k)1/2 + (Dt)1/2 ^ .
{ ' °° (£>< + Z)/C0fc)1/2 (Z>< + D/C0k)w2 - (Z)<)1/2 ' ( j

The function 71/(<) has a maximum value when C„kt = 2.3. Fig. 4 shows the form.

Case 8: halj-order surjace reaction type.

— dF{t)/dt = k-F1/2(t),
hence

F(t) = C0-(l - kt/2Co'y, 0 < t < 2C0U2/k. (17)
Here k and C„ are a rate constant and the initial surface concentration, respectively.
This surface reaction becomes a physically meaningless one after a finite time 11 = 2C01/2lc.
Therefore, we shall discuss this diffusion problem under the condition of time less than tx .
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Fig. 2. Total amount- of diffusing substance in the case of first order type. Numbers on curves are
values of k/D.

Substituting Eq. (17) into Eq. (2), we have

c = 2Or1/2-(V f (1 - kt/2C0l/2 + ukt/2C01/2s2)2 exp (-s2) ds. (18)
Ju

Eq. (18) might be reduced to the form easy to calculate, the Laplace transform method
being used, namely

C = C0 - {erfc m- [1 - y{ 1 + 2m2) + (j/2/12) • (3 + 12m2 + 4m4)]

+ exp ( —m2)[2(w)~1/2-yu — (t/2/6)• (ir)"1/2-(5m + 2m3)]), (19)

Fiq. 3. Diffusion accompanied by the second-order surface reaction. Numbers on curves are values
of C0kt.
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Fig. 4. Total amount of diffusing substance in the case of second-order type. Numbers on curves are
values of Cak/D.

with
y = kt(C0yu2, (20)

and erfc u is the complementary error function. The total amount of diffusing substance
is given bv

M = 2(Dt/ir)1/2- C„- (1 - 2y/3 + 2i/2/15). (21)

The forms of the functions C(t, z) and M(t) are shown in Figs. 5 and 6, respectively.
The quantity M(f) has a maximum value when y = 0.63.

Fig. 5. Diffusion accompanied by the half-order surface reaction. Numbers on curves are values
of kt/y/cl ■
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M.7c.
a

Fig. 6. Total amount of diffusing substance in the case of half-order type. Numbers on curves are
values of k/Dy/cl . (Dt < 2D\/Wis/k.)

3. Concluding remarks. The problems of 'limited' diffusion have been solved and
the numerical solutions obtained for three particular cases have been graphically shown.
The solutions suggest that the positions of interior concentration maxima are generally
dependent on time and that the peak heights are always less than the initial surface
concentration. This latter fact is in contrast with that in the one-step field method [5],
where the peak height is not always less than the initial surface concentration.

Whether the mass balance at the substrate-diffusion source interface in the limited
diffusion processes remarked by T. G. Giallorenzi et al. and J. Noda et al. are of first-
order type, of second-order, of half-order, or of the other may be determined from the
measurement of time dependence of the surface concentration F(t).
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