
QUARTERLY OF APPLIED MATHEMATICS 395
JANUARY, 1976

ATMOSPHERIC PENETRATION OF EXHAUST PLUMES
UNDER RAREFIED FLOW CONDITIONS*

BY
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Abstract. The interaction of a low-density atmosphere with the exhaust gases
produced by the steady firing of a rocket motor moving at hypersonic speed is studied
using the kinetic theory of gases. The Krook collision model is employed in conjunction
with a simple representation of the exhaust gas distribution to derive analytical and
numerical solutions for the atmospheric gas density as it penetrates the rocket plume.
The atmosphere gas is composed of an initially unscattered beam, which is attenuated
as it collides with the much denser exhaust plume, and a scattered component, which is
convected away from the motor by the expanding jet. These processes are illustrated
by the computed results for both an axially symmetric and a three-dimensional flow.

1. Introduction. The flow pattern set up by the interaction of an exhaust plume
generated by the continuous firing of a rocket motor and a tenuous atmosphere has
been intensively studied in recent years. Most of this work has focused on those domains
of motor thrust and operating altitude permitting this interaction to be described on
the basis of continuum fluid mechanics. At altitudes sufficiently high for the ambient
mean free path to become larger than the continuum interaction length scale, the
analysis of such a flow must be based on the kinetic theory of gases. Under these condi-
tions, the length scale associated with the atmospheric penetration of the exhaust
plume is y/A/Kn, where A is the nozzle exit area and Kn is the Knudsen number based
on y/A and the mean free path, referred to average exit conditions (see [8]). This scale
is, typically, much larger than the dimensions of the vehicle carrying the motor, since
Kn « 1. The presence of the vehicle itself may thus be ignored in analyzing phenomena
on this scale.

When the penetration scale is small compared with the ambient mean free path,
the response of the atmosphere to the presence of the plume is decoupled from the
process by which the atmosphere modifies the vacuum plume expansion. This situation
is appropriate to moderate-sized engines, such as those employed for attitude control or
maneuvering purposes in the upper atmosphere. The spatial separation of these two
phenomena has been exploited by Brook and Hamel [4] in their study of a spherical
source interacting with a stationary background gas. Baum [3] considered the expansion
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of a transient exhaust plume into a rarefied atmosphere by invoking equivalent assump-
tions about the scales associated with the interactions occurring in that problem.

The present work is concerned with the penetration of a hypersonic ambient stream
into a steady-state exhaust plume under the conditions stated above. The exhaust
gas properties are computed from a simple model, proposed by Hill and Draper [7],
of the continuum expansion of a jet into a vacuum. This expanding jet serves as a diffuse
scatterer of ambient molecules. The scattering is represented mathematically by the
Krook collision integral. This formulation leads to an analytically interpretable and
computationally tractable integral equation for the ambient density distribution. The
molecular distribution function is described analytically in terms of the density. The
distribution function is bimodal, with the unscattered molecules peaked about the
uniform free-stream velocity, and the scattered gas convected with the local macroscopic
exhaust velocity. An asymptotic, analytical solution to the integral equation is obtained.
This result is used, in conjunction with direct numerical solutions of the integral equation,
to obtain illustrative flow patterns for both axially symmetric and nonsymmetric con-
figurations.

2. Mathematical formulation. The formulation of the model will now be considered
in detail. The penetration scale is assumed to be sufficiently small compared with the
ambient mean free path for collisions between ambient molecules to be ignored. The
kinetic equation for the ambient, molecular distribution function /(x, v) is a modified
version of that given by Gross and Krook [5]:

v'ax = ~

a> = nta |u„„ Uj/1, ^^

* = (dk)'exp {~m<T ~uj'} ■

n(x) = J fd3v.

Here n(x) is the ambient number density, and ne , u, , Te are, respectively, the exhaust
gas number density, macroscopic velocity, and temperature. The maximum velocity
of the exhaust gas is u„ , while the cross-section a, entering the expression for the collision
frequency w, is an effective momentum transfer cross-section. The relation between the
momentum transfer between species computed from (1) and that given by Gross and
Krook [5] is explained in Baum [3], The mean relative speed is taken to be that between
Ui/ and the ambient wind velocity u„ because the exhaust and ambient speed ratios,
Wc and W„ , are large under the conditions of interest.

The exhaust properties are assumed in a modified version of the form devised by
Hill and Draper [7]. The forms adopted are equivalent to the Hill-Draper model far from
the engine, but take on the prescribed nozzle exit values at x = 0. The relevant equations
are

n, _ BAetU exp {— A„,2(l — cos d)2\
n0 r2 + RAexU exp {—A„2(l — cos 0)2} '
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T„/T0 = {n./noy~\ u, = utr,

ue .  y kTe Um _ u„ j~ 2 1 ~l
2 7 - 1 m, — 2 " 2 L +7-l M02j'

The parameters B and A„ are given in terms of exit properties by

B = (A Jt3/2)(u0/um),

(2)

(3)
1 f n. / 1 M"1

A„ = A/tt

The nozzle exit number density nu , speed u0 , temperature T0 , Mach number M0 ,
and the ratio of specific heats y are determined by the engine parameters. The exhaust
properties are expressed in a spherical, polar coordinate system, centered about the
unit thrust vector t. The polar angle is 6, and the azimuthal angle </> is measured from the
plane containing the wind and thrust vectors. The wind vector makes an angle with
the thrust vector. Thus (see Fig. 1)

x = r(t cos 6 + j sin 6 cos <t> + k sin 9 sin <£) = rr,

Uoo = u„(t cos \p + j sin \p),

v = Vv — F(cos + sin £ cos rij + sin | sin r/^).

All quantities with a caret superscript are unit vectors. The system (1) through (3) must
be supplemented by the boundary condition that, far from the plume, the flow is uniform:

exp 2fcT„
= u„/(kT„/m)U2

Ttl , \2\l t(v - u„) > = /„
(4)

k

Fig. 1. Coordinate system geometry. Nozzle exit at origin.
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Here n„ , u„ , and T„ are, respectively, the ambient number density, velocity, and
temperature far from the plume.

The representation of the exhaust gas displayed in (2) and (3) describes the expansion
into vacuum of a continuum jet plume. The motion is isentropic and isoenergetic.
The density distribution (and, hence, each displayed fluid quantity) satisfies the inviscid
equations of motion asymptotically, far from the nozzle exit. The angular dependence
of the asymptotic density distribution is chosen as an empirical curve fit to numerical
methods of characteristic solutions for a variety of engines. The expressions for the
parameters B and A„ ensure global conservation of mass, momentum, and energy.

The continuum description of the exhaust gas ultimately breaks down as the plume
expands. The rarefaction process has been studied by Grundy [6], who shows that,
except at large angles 0, with respect to the thrust axis, the density and velocity are
given by the continuum solution. The radial component qf the pressure tensor, on the
other hand, does not continue to decrease isentropically, but levels off at a finite, "frozen"
asymptote. The Mach number corresponding to the freezing temperature is typically
very large, on the order of 15-25 for most angles 6. When the local Mach number is
large, however, the interaction between ambient and exhaust gases is nearly independent
of the local plume temperature, as shown by the asymptotic solution obtained in Sec. 4.

The next step in the calculation is the construction of the fundamental integral
equation for n(x). Following Anderson [1], (1) may be written in characteristic form as

7 J; /(x + vs) = (x + £>s)n{$(x + is) — /}, r = x + vs. (5)

This describes the evolution of /, at any point r, a distance s along a ray through the
field point x, in the direction v (see Fig. 2). Now integrate (5) from minus infinity to the

Fia. 2. Characteristic ray geometry. Molecules at x arrive from all directions v. The probability of
arrival depends upon the distance s from the point of last collision.
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field point s = 0, applying the boundary condition represented by (4). The result is

1 f°
/ = /„ exp (—t/v) +" ds' <*>(x + 0s')<J?(x + vs') exp (—r*/F)n(x + vs'),

V J — ay

r — f co(x + vs) ds,
J —00

T* = f co(x + vs) ds,

$(x + vs') = exP ^V ~~ U' C0S a^2 ~ ^e2[i - cos2 a] | ,

_ „ [cos g cos 8 + sin g sin 6 cos (i? — <p)]r + s' 
cos a v r _j_ 2rs'[cos g Cos £ + sin 0 sin £ cos (i? — <£)]}1/2

The argument of ne , u, , and Te in (6) is x + vs'. Note that the V dependence is now
displayed explicitly, since v depends only on the angle variables £ and v- The integral
equation follows from (6), by using the definition of n in terms of the distribution
function /:

/*T /»2t /«»

?i = / sin £ d£ / dr) / v2 dv /.
J 0 J o *'0

Thus

n~ = ^ I0 Sin * I0 dv 008 P' t(a^~) ) exp ~ cos2 ̂ )]

+ L^w{w)"'4w'™ "■*{■§)"')
•exp [-\We (1 — cos a)] — (x + vs'u ,n«

cos /3 = cos £ cos \p + sin £ sin \p cos r/. (7)

Again, all exhaust properties in (7) are functions of x + vs'. The functions HJp, q)
are defined by

Hn{p, q) = J072 [ dVV"-2 exp {-KF - pf ~ q/V).

Anderson and Macomber [2] contains a detailed analysis of this function, together with
tables for n — 1,2, 3. Eq. (7) determines the spatial density distribution of the atmos-
phere as it penetrates the plume core, while (6) expresses the distribution function in
terms of n. In this form, the equations are too complicated to be useful. However, by
utilizing the fact that, in many cases of interest, both We and Wa are large, (6) and (7)
can be reduced to a tractable form.

3. The hypersonic limit. Consider the first term in the integral (7). For large Wa ,
the exponential factor suggests that the integrand, considered as a function of £, is
strongly peaked about cos /32 = 1. Examination of the Hn functions reveals that //„ ,
considered as a function of p, is exponentially small for large negative p and propor-
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tional to pn~2 for large positive p. Since the dependence of Hn on W„ for large positive p
is weak, apart from a purely multiplicative factor WJ,_2, the dominant contribution
to the £ integration should come from the neighborhood of cos /3 = +1.

To proceed formally from these ideas, it is more convenient to do the £ integral first,
and employ the variable x = cos £. The integral under consideration assumes the form:

I — J dx H4(x) exp { — \Wjg(x)\, g(x) = 1 — {x cos \p + (1 — x2)172 sin ip cos 77}2.

(8)
Applying the method of steepest descent to (8), the saddle point is at

COS \I/ v • 2 » • 2 \l/2
x0 = _ sin2 ^ sin2 ' cos 0{Xo) = ±(1 - sin \p sin v) .

Both saddle points are real, but the contribution from the one associated with the minus
sign is exponentially smaller than that associated with the positive value of cos /?, and is
henceforth ignored. The integral I is now readily evaluated as

1 - i~ (?7k)) exp (-W-Vbowiw. cos fi; r(x0) Jr) , (9)\g (x0).

2
g(x„) = sin2 i sin2 77, g"(x„) = z—-—2 (1 - sin2 77 sin2 i/<),

I — Xq

COS \J/ n /1 . 2 I • 2 \1/2x0 =    , cos p = (1 — sin w sin rj) .cos 0

Using the result (9), the integration over rj may be performed. The required integral
is then

1 C2'
J = — / I dt).Ztt J 0

Examination of this expression when sin \p 1 (i.e., the undisturbed flow is neither
parallel nor antiparallel to the thrust vector) shows that the dominant contribution
comes from the saddle point at rj = 0. The apparent saddle point at tj = ir is spurious,
with the result that

J wj Hiiw"' Cr.) T)' 7 - 11 o). (10)

A separate calculation when W„ sin \p is 0(1) (but W„ » 1) yields the same result for J.
Physically, (10) states that the overwhelming majority of the unscattered ambient
molecules are aligned with the uniform wind upstream of the plume. A similar analysis
(the details of which are presented in Appendix A) may be applied to the homogeneous
term in (7). The hypersonic limit of (7) then becomes

~ (y) = H4(W„ , q„) + £ dy> K(y', y) J- (y), (11)

Kb,, + (*)* - If cos r] "'(f)* V) I <„')•£ HAW. , ,.).
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Here:

W, = WXy'), Q« = qXy'), cos /3* = cos 6 cos \p + sin 0sin \p cos 4>,

y = r(BA)~u\Kn), (Kn)"1 = n^(BA)u\

q" = \W~) T^x + q' = T*^x + (12)

The inhomogeneous term in (11) contains the variable q„ = (m/fcTco)1/2r(x + as),
where d is a unit vector in the direction of the undisturbed wind. This quantity is directly
proportional to the number of collisions experienced by a molecule traveling in a straight
line from infinity to the point in question in the direction of the undisturbed wind.
Written explicitly, it has the form:

q«,
Wa

ro fl + (~) — 2 — cos sl exp { — A„2(l — cos n)
  -1 / Ji J— \ UaaJ Uq> _J — y J dt „ 2

1 + t2 + 21 cos (3* H—~j- exp j — A„2(l — cos m)2)
(13)

cos 6 + t cos  cos /3* + t
(1 + t2 + 21 cos /3*)1/2 ' C0' (1 + t2 + 21 cos /3*)1

As y —> oo , the number of collisions vanishes and the inhomogeneous term in (11)
approaches unity. As y —> 0, the number of collisions experienced becomes very large
and the inhomogeneous term vanishes exponentially. The number of collisions also
becomes large along rays near 0 = 0 and 6 = \p, since the molecule has then had to
traverse the near singularity in exhaust gas density at the origin. Physically, the ray on
the opposite side of the nozzle exit from the wind is shielded from the ambient molecules
for finite distances r from the exit. The nature of q„ near this singular ray (corresponding
to cos (3* = 1) may be analyzed as follows: the behavior is dominated by the singularity
at cos 13* = 1, as y approaches infinity or Kn vanishes. Thus, the quantities cos fi and
cos 5 in (13) may be replaced by their values at cos 13* — 1, i.e.,

COS n = — COS 1 + t < 0, COS fl = cos \p, 1 + t > 0,

cos 5 == — 1, 1 + t < 0, cos S = 1, 1 + t > 0.

Upon inserting these values into (13) the integral for q„ may be evaluated explicitly as

Wl - I {(* + S) exp A"2(1 + C0S *)2][a tan_1 (_1+aC08^) +

+ ^ exp [ — Aro2(l - cos i/O'jQtan 1 ~ tan 1 ( 1 +6°°S ^ )j| , (14)

a = |l — cos2 /3* + exP [ —A„2(l + cos \p)2
j 1/2

(~) exP [~ Aoo2(l — cos \p)2]j

This expression is exact along the singular ray cos /3* = 1, where it reduces to

b = < 1 — cos fl* + • y
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#: = 1(Kn)_1(j _j_ exp (1 + cos iA)2J

+ 1 ~ TT exP o°° (! _ cos ^)2 I)' (15)
Woe

•I
Along the singular ray, the hypersonic approximation breaks down for large y, since
the boundary condition at infinity requires qa to vanish there. Actually, unscattered
molecules arriving from directions other than that of the freestream flow reach the
ray d = \p, <t> = 0 for large y, permitting the boundary condition to be satisfied. Along
any adjacent ray corresponding to a fixed value of cos /3* such that cos ^ 1, when
(Kn/y)2 is sufficiently small compared with 1 — cos2 (i*, (14) reduces to

|p - = (1 - cos2 /3*)1/2|^1 + exp [—A„2(l + cos i)2]

+
^   Um

Um
exp [—A„2(l — cos \p) ]f (16)

Thus, the boundary condition at infinity is recovered, but with increasing slowness as
the singular ray is approached. Note that the quantity y( 1 — cos2 /3*)I/J is proportional
to the distance in the plane perpendicular to the ray cos /3* = 1 from the ray to the
point in question. The "shadow" region is then a cylindrical tube surrounding the singular
ray. Since the inhomogeneous term Wa~ 2//4(li'„ , ga) is roughly an exponential in
( — qn/W,), the width of the shadow region is given (in units (BA)x/i Kn-1) by the
factor multiplying y'1( 1 — cos2 in (16).

Now consider the homogeneous term in (11). The variable q. = (m//c7'e)r* has
the explicit form:

= (Kn)"1 exp { -§A«2(1 - cos df j [l + ^ - 2 ^ cos p*\WXy) u<(y) L J

•|tan_I exp 5A„2(1 — cos 0)2J — tan-1 exp 5A„2(1 — cos (17)

The quantity qe is proportional to the number of collisions experienced by a molecule
initially penetrating to a distance y' along a given radial ray as it travels outward along
the ray to the field point at y. Note that q./W,(y') becomes very large (0(Kn_I) for
6 < 60° and realistic values of A„ and u„/u0) at y' = 0 for fixed y. Since the function
H3(W,, qe) is roughly exponential in ( — qJWr), the probability that those few molecules
deposited upstream of the exit can penetrate to the other side is very small. Moreover,
the contribution to the density at any point from molecules scattered radially inward
towards the nozzle is exponentially smaller in W 2 than that from molecules scattered
radially outward away from the nozzle. For these reasons, the lower limit of integration
in the homogeneous term of (11) is the origin. Similarly, the overwhelming preponderance
of outward scattering events means that there is no contribution to the number density
at y from points y' > y on that ray. Further details are given in Appendix A. Finally,
the functions Hn may be simplified by applying the method of steepest descent once
again. The result, valid for p 1 and Z = q/p3 finite, is the first term in Anderson and
Macomber's [2] asymptotic expansion:
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H.(P, ,) - ^ e*P {-^ [■ + I f,]} , (18)
, , il + ? + L + (L
0 \3 2 27 \27 +?)-r+{ i+i-(i+?)2\ 1/2] 1/3

Z = g/p3.

Note that as q —> 0, 0) = p"~2, while for large q > 0

g<"-2,/3 J 3 2/3
exp\"29

The quantity p'Z in the exponential is equal to q„/Wm in the inhomogeneous term of
(II), and to qJW« in the homogeneous term. These quantities are independent of W„
and We, respectively. Thus, the quantity W„ and W„ enter the //„ functions only through
the quantity Z, which is formally 0(Wa~2) or 0(We~2) for fixed y. These terms are
retained in (18) to allow y to vary from a moderate multiple of Kn to values »1. The
principal effect of this variation is to shift the location of the saddle point t0 for radius
oiy < 1/2. Although the shift is not large, the presence of the quantity t» in the exponent
of (18) can change the computed value of n/n„ at a given location by as much as a
factor of two.

The physical picture represented by (11) may be summarized as follows. Molecules
entering in a beam parallel to the undisturbed flow are scattered out of the beam by the
exhaust gas, which is unaffected by the process. The scattered molecules are thus deposited
along each radial ray in accordance with the inhomogeneous term in (11). The molecules
are then caught up in the radial expansion and swept away from the nozzle, undergoing
additional collisions as they proceed radially outward. The speed ratio of both the incident
beam and the scattered gas is so high that the thermal spread in molecular velocities
may be ignored, in comparison with the velocities considered. The exhaust gas density
is so high in the vicinity of the nozzle exit that no molecules can penetrate this region.
As the radial distance from the nozzle exit increases, the penetration process becomes
more efficient. Ultimately, the exhaust gas density is sufficiently low for the ambient
molecules to pass through the plume undisturbed, and the ambient density is recovered.
The phenomena outlined above are illustrated schematically in Fig. 3.

The remainder of this paper deals with the solution of (11), and the computation
of two examples. The following section contains an asymptotic, analytic solution of this
equation, valid far from the nozzle exit. Sec. 5 discusses the computational procedures
employed in the direct numerical solution of (11) and in the evaluation of the asymptotic
result of Sec. 4. The analytical and numerical methods explained in these two sections
are applied to an axially symmetric flow (\L = 0) and a nonsymmetric, "side-blowing"
flow = 90°) in Sec. 6.

4. The asymptotic solution. When the radial coordinate y is 0(1), an approximate
solution to (11) may be readily obtained. Under these circumstances, u,(y') approaches
uM , while q,/We becomes

W. ~ + fe) ~ 2 2 C0S <**] exp [-A~2(1 ~ C0S 0)2](7 ~ y (19)
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Unscattered Gas Deposition

Scattered Gas Accumulation

Fxhaust Gas Core Boundary

Fig. 3. Schematic of atmospheric penetration process.

Thus, qe/W. is 0(1), which means that the quantity Z = q0/W,3 in the function H3 may
be set equal to zero, reducing H3 to an exponential. Eq. (11) then reduces to

fe ■ nv*•<»> j(,j)=/; <'»' o'«'> {y,)■ (20)

m - f exp 1 [l + fe) " 2^J V exp [ —A„2(l — cos 0)2]

exp [ —A„2(l — cos 0)2].

Eq. (20) is readily solved by differentiating with respect to y to obtain a first-order
differential equation for the quantity [n/n„ — l/WjHi(y)]J(y). Examination of (20),
as y approaches zero, shows that this quantity should vanish at the origin. Thus

n
n~* W,1-2 HiiyU = exp L — A„2(l - cos 6)2] f dy' (21)

'00 j y Uu j 0 w 00

The function Ht(y) can be simplified in a similar manner away from the singular ray.
The function q„ then has the form:

q„/W„ = Q/y,
f dt [1 + (uu/ujf - 2(mm/m«.) COS 5]1/2 exp L~A„2(1 - cos m)2]
J_„ 1 + t2 + 2t cos /3*S2

Then, provided that the numerical value of on the ray under consideration is not too
large, q^/Wj may be set equal to zero in the function {\/W«,2)i/4(W»<Z<»)> thereby
reducing it to an exponential in { — Sl/y). The quadrature 011 the right-hand side of (21)
may then be evaluated in terms of the exponential integral function 7i'2(f), yielding
the result:
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— = ~2 Ht(Wm , ?.) + — |~1 + (—V - 2^) cos eT/2
nm Woo uMy L xWcx,/ \uj J

•exp [—A„2(l — cos 0)2]£2(y) , (23)

The first term in the solution (23) could also formally be replaced by exp \—U/y\,
to the present order of accuracy. However, the analysis in this section can be interpreted
as an attempt to find an approximate expression for the scattered gas contribution to
the number density, as represented by the homogeneous term in (11). The second term
in the solution (23) is the desired result, as is the right-hand side of (21). However, the
latter expression is too complicated to study analytically, and sufficiently expensive
in computer time (relative to the direct numerical solution of (11)) not to warrant its
use without the further approximation represented by (23).

Now consider the behavior of the solution as a function of y and 9. For small y
(assuming that the asymptotic solution is at least qualitatively correct), the function
Ei($l/y) has the asymptotic expansion

g,~y«tpjj-i'/»)|1 + 0(n/i,)).

The scattered gas contribution becomes very small as the nozzle exit is approached
because few ambient molecules are able to penetrate the dense region of the plume. For
large angles 9, the factor exp { — A„2(l — cos 9)2} (representing the angular dependence
of the exhaust gas density distribution) cuts off the scattered gas contribution because
there are so few exhaust gas molecules to serve as scatterers. For large y, E2($l/y) may
be approximated by E2 ~ (Q/y) log (Q/y). Thus, the scattered gas density rises to a peak,
then decays much more slowly with increasing y. The decay is caused by the increasing
volume in the plume available to molecules scattered much nearer to the nozzle and then
convected radially outward. The additional local scattering far from the nozzle con-
tributes weakly, accounting for the logarithmic factor in the scattered result. However,
the exhaust gas density ultimately decreases to the point where the unscattered contri-
bution dominates, permitting the uniform boundary condition at infinity to be recovered.

5. The numerical computation procedure. The numerical computation of n/n„
requires the evaluation of the inhomogeneous term in (11) or (23) when the asymptotic
solution is valid, together with a procedure for calculating the homogeneous term in the
integral equation. The evaluation of the asymptotic approximation to the Hn functions
is straightforward, as is the computation of the function E2 as a function of its argument.
Hence attention is confined to the computation of qa , which determines the value of
the inhomogeneous term, and to the evaluation of the homogeneous term in (11).

The computation of the integral defining qa , as given by (13), will be considered first.
Note that the integrand is not singular in the entire range of integration, since its denom-
inator is equal to or greater than one throughout this range. However, as shown in
Sec. 3, the limit of qa as y — > °° and cos f3* —» 1 is nonuniform; that is, the value of the
limit depends on the order in which these two limiting processes take place. Numerically,
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this nonuniformity means that one must be very careful in evaluating this integral when
both y is 0(1) or larger and cos /3* is very close to 1. For such values of y and cos /3*,
most of the contributions to the integral come from points very close to t = —1, and
the accuracy with which cos 5 and cos n can be evaluated at these points is limited by the
arithmetical precision of a computer.

A close examination of the variation of the integrand J in (13) with respect to t
shows that the integrand varies smoothly in the entire range of integration, so long as
cos 0* is not close to 1. For cos /3* near 1, the integrand has very sharp variations near
t = — 1, and a peak value in that neighborhood. For cos /3* = 1, the peak of the integrand
is exactly at t = —1, and is discontinuous.

In view of the above described peculiarities at the integrand J of (13), the following
method was devised to compute this integral. The integral, I, is divided into two parts,
IL and IR :

I = IL+IR,

/— 1 — € 1 f*0J(t, y) dt, IR = J(t, y) dt.
- oo * — 1 + « a

where e, and «2 are two small positive numbers, ej is chosen such that the omitted part
of the integral, from —1 — to —1 divided by IL , is equal to the specified fractional
tolerance (TOL) for the computation of the inhomogeneous and homogeneous terms.
c2 is chosen in a similar fashion. It can be shown that, for cos /3* = 1, el and e2 are given by

*1 = 7. TOL exp
Kn
V (24)

(1 + cos if)

e2 = TOL exp (1 — cos ^)2^ arctan exp (1 — cos \p)

Eqs. (24) are, in fact, used to compute f! and e2 for any value of cos /3*. It can be shown
that these values of e1 and e2 are smaller than the values required for cos (f* ^ 1, thus
resulting in smaller values for the omitted parts of the integral.

IL is computed in steps At of the integration variable t, starting from t = — 1 — «i ,
and advancing to the left towards <=—<». The magnitude of each step At is determined
so that the integrand changes by about one order of magnitude in the range of the step.
The contribution to IL from each step is computed through a six-point Gaussian inte-
gration. IR is computed in a similar, steplike fashion, starting from t = — 1 + e2 and
advancing to the right towards the origin. IL and IH are computed concurrently, so that
the total integral I is progressively built up from both sides of the point t = —1. The
computation of IL is terminated when the most recent contribution to 1, divided by
the accumulated I, is less than the fractional tolerance, TOL, of the computation. The
computation of IR is terminated in a similar fashion, or when the origin is reached.

Now consider the calculation of the homogeneous term in the integral equation. For
computational purposes, it is more convenient to work with the radial coordinate r*,
defined by

r* = r/(BA)W2 = (Kn )"12/. (25)

The initial growth of the homogeneous term in this variable is slow and well-behaved,
taking place over the range 10 < r* < 100 along most radial rays. Letting the dimen-
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sionless, inhomogeneous and homogeneous quantities in (11) be n* and nh*, respectively,
this equation may be written in the form:

nh(r*) = R(r', r*)n*(r') dr', (26)

n*(r') = n,* (r') + nh* (r') . (27)

In the "exact" definition of the integral equation, r* is equal to zero. However, in the
numerical evaluation of the integral of this equation, r* can be much larger than zero,
as will be shown later.

Now consider the following mesh of points:

l I ) '2 ) '3 ' m — 2 ) 1 m — 1 ) 'm ) ' m +1 ) ' m+1 — ' m I '^m • VAO)

Note that, in general, a variable mesh size is assumed. Assume that the values of n*
are known at all points up to and including the point rm*. The value of n* at the next
point, rm+1*, is computed by the following procedure.

The integral of (26) is divided into two parts, so that

n,*(rm+l*) = h + h, (29)

where

/i = K(r', rm+1*)n*(r') dr', (30)

I2 = [ R(r', rm+1*)n*(r') dr', (31)
Jr i*

h is evaluated by the parabolic integration formula (BIO) of Appendix B. Thus

7 =   K(r * r *\n*(r *\ _L ^m(3/tm-i -j- Jlm)
6hm_,(hm + hm-0 K[ m-1 ' m+l )n { m~1 ' +

. V(r * r *\n*(r *"1 4- fhs^lh^zl
' r"*+1 >n ' + 6(hm + hm.,)

■K(rm+1*, r„+!*)[«,*(rm+l*) + nh*(rm+1)]. (32)

Substituting /, from (32) in (29), and solving the resulting equation for nh*(rm+l*),
one obtains

= 1 - [hm(3hm-i + 2U/6(i + hm^l)]R(rm+l*, rm+1*) (33)
where // is equal to h , as given by (32), with set to zero.

As can be seen from (31) and (32), the right-hand side of (33) involves
(i) The values of n* for all points up to and including the point which are

known;and
(ii) The value of n* at the point rm+1* which can be evaluated separately.

Thus, the right-hand side of (33) involves quantities that are known, or can be evaluated
independently of nh*(rm+l*); therefore, (33) is an explicit expression for the unknown
nh*(rm+1*).

I2 is computed by successive applications of the parabolic integration formula (Bll)
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of Appendix B to three points at a time, starting with the point rm* and advancing to
the left towards the point r,*. The reason for computing I2 backwards, in this way, is
that the kernel K(r', rm+1*) decreases sharply as r' becomes smaller and smaller than r,*,
and thus the contributions to I2 decrease sharply. This means that the computation of
12 can be terminated when a desired accuracy is achieved, much before reaching the
initial point )'!*. The computation of I2 is terminated when the most recent contribution
to I2, divided by the sum of I2 (accumulated) and //, is smaller than a specified fractional
tolerance (TOL), which is also the tolerance within which n* is computed. If m is even,
and the computation of /2 must be extended all the way to r*, then the last contribution
to 12 is from two points rather than three, namely points r2* and r*, and formula (B9)
of Appendix B is applied instead of formula (Bll).

The procedure described above for the computation of n * requires that n* be known
at the first three points, r *, r* and r*. The values of n* at r* is the initial condition
of the problem, and when r* is taken equal to zero, one has the "exact initial condition"
of the problem, which is nA*(0) = 0. A close examination of the situation reveals that,
as one travels along a radial ray from the origin outward, n* decays rapidly from 1 to
a very small value, then increases back to 1, while n* increases slowly from 0 to some
maximum value, then decays back to zero. Thus, in the numerical evolution of n*,
a great deal of computer time is saved, without any loss in accuracy, by starting the
solution at some r,* larger than zero with the approximate initial condition n* = 0
at r i*. t* is selected so that it is in the region where n* has its minimum plateau. The
rapidly decaying kernel annihilates the errors associated with this approximate initial
condition. Thus

nh* (rS) = 0. (34)

The value of n* at r2* is computed by evaluating 11 in (30) through the trapezoidal
rule (12 in this case is, of course, equal to zero). As for the value of nh* at r3*, it is com-
puted by evaluating both Ix and I2 in (30) and (31) by the trapezoidal rule. Thus

*r *\ _ fci/2[i?(?-i*, r2*)n*(r,) + R(r2*, r2*)n,*(r2*)] , ,
Wft(?2)" l-(V*,r2*) ' (3)

_ |[/t|j?(r!*, r3*)n*(r,*) + (hi + h2)R(r2*, r3*)n*(r2*) + h2R(r3*, r3*)ri,*(r3*)]
n" ^ _ 1 - (h2m{r*,r*)

(36)
If the integrating step hm from r„* to rm+l* is too large, then the denominator in (33)

can be small, or even negative. This must not be allowed since instabilities will result.
Now, it can be shown that:

K(rm+1*, ?'m+1*) < R(rm*, ?'„*) (37)

and, therefore, if the integrating step is chosen so that

K = R(rm*\ rm*) ' (38)

the denominator of (33) is roughly equal to 1 — 0.5 «i . Thus, for sufficiently small
values of the parameter ai , instabilities can be avoided. The correct value of for a
given radial ray cannot be defined a priori, but one anticipates that a value between 0.1
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and 1 should do. Indeed, in the applications discussed in the next section, the value
<*i = 0.5 was employed. This ambiguity in the right value of ai notwithstanding, (37)
and (38) show that hm increases as rm* increases, a very desirable result. A second criterion
for the selection of hm is set up by fitting a parabola to the values of n,* at the three points
rm~2*, and rm* and then extrapolating to a point >'m+1* where the fractional change
in n* is a small number , on the order of 0.01 to 0.1. The value of /3, actually used
is 0.05. The value of hm derived from this criterion is compared to that given by (38),
and the smaller of the two is selected. For the two initial integrations with the trapezoidal
rule, a sufficiently small integrating step is taken, readily satisfying the stability con-
siderations discussed above.

In the terminology of numerical computation, the method described above for the
computation of the homogeneous term in the integral equation would be classified as a
second-order, variable multistep, direct, implicit method. Watanabe [9] has described
and classified a variety of numerical methods for the solution of Voltera-type integral
equations arising from kinetic theory problems. Note that the present method, although
an implicit method, gives the result explicit ly. This is possible because the integral
equation is linear. The integral equations considered by Watanabe are nonlinear. Thus,
the implicit methods that he describes involve either iterative or predictor-corrector
techniques. There are two other basically new features in the present method, which
contribute immensely to the efficiency and stability of the numerical computation.
The first feature is the use of variable integrating steps selected locally. The second

*feature is the backward integration of the integral equation, from the field point rm+l*
towards the origin, which exploits the sharp decay of the kernel away from rm+l*. Ap-
parently, this property of many kinetic theory kernels has not been exploited before;
methods reported in the available literature invariably use a forward integration (from
the origin to rm+l*).

A computer program in FORTRAN IV has been developed, employing the numerical
procedures described above, and this program has been run successfully on the UNIVAC
1108 system. Before final production runs were made, the accuracy, stability, and
efficiency of the program were investigated through several test runs, by use of a trial
integral equation whose exact solution was known.

The procedure for calculating n* works very well for any value of r*, so long as
cos 0* is not equal to 1. The procedure for calculating n* is stable and accurate. It is
efficient for values of 6 equal to or less than about 45° if an accuracy of 0.1% (TOL =
0.001) is required. By accepting an error of 0.5% (TOL = 0.005), the program can be
utilized out to angles 6 of 60°. For larger values of 6, the value of the parameter aj
required for an accurate solution is so small that the integrating steps become very small.
Hence, a great deal of computer time is required to obtain the solution. For such values
of 6, nh* can be computed much more efficiently from the asymptotic expression (23),
which is valid quite close to the origin for such large angles. A computer program for
the evaluation of the asymptotic expressions for n* has also been developed, and works
quite well.

For an accuracy of one part in a thousand (TOL = 0.001), it takes, on the average,
about 30 sec of 1108 central processing unit (CPU) time to compute n* and n* along a
radial ray, all the way from the origin to the value of r* where the ambient condition
is recovered. The CPU time required for the calculation of nh* is about three times
that for n*.
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6. Numerical results. The theoretical and numerical analyses described in the
previous sections have been applied to the calculation of an axially symmetric flow
("aligned flow"), \p = 0; and to a "nonaligned" case, ip = 90°. The values of the remaining
parameters needed to determine uniquely the solution for n/na were the same for both
flows, and are listed in Table 1. The integral equation was solved directly, to an accuracy
of 0.1%, on rays spaced at five-degree integrals for 6 < 45°, and with a reduced accuracy
of 0.5% for values of 6 between 45° and (50°. Eq. (23) was used to obtain results for
angles 6 greater than 60°.

TABLE 1. Parameters employed in computed results for n/na

Kn W„ Um/uo, y Ma m/me
10"3 6 0.3 1.3 4 0.8

First consider the aligned flow. Fig. 4 illustrates the relative magnitude of the scattered
and unscattered contributions to the density on the 6 = 30° ray. Near the nozzle exit,
both contributions are small because most of the molecules in the incident, ambient
stream are deposited before reaching the 30° ray. As y increases, more molecules are
deposited on the ray, and then convected outward by the exhaust. Since the scattered
gas at a given y station is an accumulation of molecules scattered earlier, this buildup
is quite rapid, and gives rise to the overshoot in density depicted in the figure. The
combination of the geometric relieving effect and reduced scattering discussed in Sec. 4
then reduces the scattered gas contribution very slowly (note the logarithmic scale)
to zero. The unscattered gas density rises monotonically with increasing y to recover
the boundary condition at infinity.

n
n oo

i iii rfnl i i i i i i i i I | | I I I I I I I 1 1—I I I I I I

10"' 1.0 10 102
Radial Plume Scale Coordinate y

Fig. 4. Scattered and unscattered contribution to ambient penetration of exhaust plume (0 = 30°).
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Fig. 5. Radial density distribution for aligned plume for values of 6 = 5° to 35°.

The above picture holds qualitatively on all rays, with only the magnitude and location
of the maximum in the scattered gas contribution changing from ray to ray. Figs. 5 and 6
show the development of the radial profiles with increasing 6. Near the thrust axis, the
recovery of the ambient condition is slowest because the plume is densest. The density
overshoot begins at about 8 = 15°, and increases in magnitude with increasing d, until

n_

10"2 Kfl 1

Radial Plume Scale Coordinate y

Fig. 6. Radial density distribution for aligned plume for values of 6 = 40° to 60°
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peak values are reached for values of 6 slightly larger than 6 = 60°. The location of the
peak moves closer to the nozzle with increasing 8. For larger angles, the density drops
rapidly towards the ambient value, because the exhaust gas density is so low that no
significant scattering takes place.

The results predicted by the present theory for values of y smaller than about 10~2,
corresponding to r* = 10, must be treated with extreme caution. Since r* measures the
radial coordinate in units of exit radii (B is about 0.3 in the present example), phenomena
on this scale may be strongly influenced by the details of the geometry of the body
carrying the motor. Moreover, even in the absence of a finite body, the exhaust gas
characteristics in the vicinity of the nozzle are not described accurately by (2). However,
the behavior of the solutions for larger y is not sensitive to the results close to the nozzle
exit.

The density is plotted as a function of angle at several radial stations in Fig. 7.
The ambient conditions are recovered progressively later in the expansion as 6 decreases,
since the region near the thrust axis is the least accessible to the atmospheric gases.
Fig. 8 shows the corresponding curves for the windward portion of the plane containing
the wind and thrust vectors in the nonaligned case. The density distribution is quali-
tatively similar to that in the aligned flow. However, the asymmetry is such that the
recovery must be much slower on the leeward side (Fig. 9), because of the fact that the

4 .

n
n_

Fig. 7. Angular density distribution for aligned plume.
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Fig. 8. Angular density distribution for nonaligned plume (windward side).

atmosphere must penetrate through the entire windward portion of the plume before
reaching these rays. The singular ray is now at 6 = 90°, on the leeward side. Although the
model predicts some scattering along this ray, the value of qa/W is 0(exp (— A J)/Ku),
which is less than 10"3 in the present problem.

Fig. 9. Angular density distribution for nonaligned plume (leeward side).
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Appendix A. Hypersonic limit—homogeneous term. The homogeneous term in
(7) may be rewritten (inverting the order of integration) as

L u i Id»Lsin £ d( fe) /2

CO

• exp {-We\l - COS2 a))Hs(W. cos a, q.) — , (Al)
Wo,

~(w) I d° "("+<>')■
Here, cos a is given by (6), while the quantities T, , «, W, , and n/n„ are functions of
x + vs'. The basic assumption is analogous to that employed in Sec. 3; i.e., the dominant
contribution to the angular integrations over £ and 17 comes from the neighborhood of
cos a = 1, because of the large factor W,2 in the exponential in the integrand of term (Al).
By letting x = cos £ be the first integration variable, the exponential factor in term
(Al) becomes

-\We (x _|T /('T)' /(-r) = 1 - b cos 0 + (1 — x2y/2 sin 0 cos (r, — <£)]2. (A2)

Although the quantity multiplying j(x) in (A2) is itself a function of x, through its
dependence on the variable x + vs', the fact that it is large and positive for all values
of v means that the contributions to (Al) will be exponentially small, except for values
of v corresponding to cos a = 1. Examination of (6) shows that cos a = 1 can only
occur for v = f. Thus, the exponential factor (A2) may be approximated by

-W^~7yKx). (A3)

We is a function of f(r + s') in (A3). The method of steepest descent may now be applied
to (Al) in the same way that the corresponding integrals for the inhomogeneous term
were evaluated in Sec. 3. The results implies that the remaining terms in the integral
are to be evaluated at x = cos 6, r\ = <t>. When these values are inserted into expression
(6), then cos a = 1, as required for consistency, provided that s' + r is positive. Where
s' + r is negative, cos a = — 1, and the contribution to (Al) is again exponentially small
in We , this time because of the fact that the function H3(— Wt, q,) is 0(exp ( — W?/2)).
If, now, the substitution r' = s' + r is made in the integration over s' which remains
in (Al), then the homogeneous term reduces to that given in (11).

Appendix B. Parabolic integration formulae with variable integration step. Con-
sider the following mesh of three points xx, x2, and x3: Xi, x2 = .Ti + hi , xa = x2 + h2 ,
and the following integrals of a function f(x):

h,2 = I dx (Bl)•'ii

I2.3 = [ f(x) dx (B2)
" Xi

fj.3 = I j{x) dx. (B3)
«' X 1
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Obviously,
/1.3 = Zi., + Z2.3 . (B4)

The objective here is to derive approximate expressions for these integrals, by use
for f(x) of the second-order Lagrange interpolating polynomial:

m = ft,(ft, + K) - x*){x ~X3)-hX{x~ xi)ix " X3)

+ h2[h!\ ft2)~ Xi){-X ~ (B5)

where /i = f(x0, and so on.

/ (x — x2)(x — x3) dx = |(.r23 — x/) — %(x2 + x3){x2 — Xi) + x2x3{x2 — xj
J X\

= Ife — a;02(3a:3 — x2 — 2x0 = ^ (3^, + 2ft,). (B6)

By interchanging x^ and x2 in (B6), one obtains

J (x — x0(x — x3) dx = —5(^1 — x2)2{3x3 — Xi — 2x2)

= -^(3^ + M- (B7)

By substituting .t2 for x3 in (B7), one obtains

£ (x — xOOr — x2) dx = — |(z2 — x,)3 = — (B8)

Therefore

7 _ fei(3fc2 + 2ft,) ft,(3ft, + fei) , _ h,3 , .
6(ft2 + ft,) Jl + 5ft2 72 6ft2(ft2 + ft,)73 '

Furthermore, by interchanging ft2 and ft, , and /, and /3 in (B9), one obtains

t    ^2 f t ft2(ft2 3ft,) , - ft2(2ft2 -f- 3ft, , ,-pv,
2'3 ~ 6ft, (ft2 + ft,) 71 + 6ft, h + 6(ft, + ft,) ?3 ' ^ ;

Finally, by adding (B9) and (BIO), one obtains

r ^2 "I" ̂  1 I 2ft, ft2 t (ft2 -f" ft,) ^ ( 2ft2 ft, j ~~| /t> 1
= —6— |_—j— A + fttft2 /» + —ftT^ AJ • (Bll)

The error involved in the approximate integration formulae (B9) to (Bll) is of the
order of ft4. For ft, = h2 , formulae (B9) and (BIO) reduced to the well-known Adams-
Moulton formula, while formula (Bll) reduces to Simpson's rule.
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