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A TRANSFORMATION PROPERTY OF THE BOLTZMANN EQUATION*
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1. The main theorem. In the kinetic theory of gases the governing equation for
the phase density function of a simple gas is the Boltzmann equation, which is a non-
linear integrodifferential equation:

Dol wn o [e-clor-mava, &

where ¢ denotes the time, z; , 7 = 1, 2, 3, denote the spatial coordinates, and ¢; , 72 = 1, 2, 3,
denote the components of velocity. The usual summation convention is used, so that the
repeated index ¢ in (1.1) is summed from 1 to 3. The notation f = f(¢, z. , c¢.) is the phase
density function whose value represents the number density of the gas molecules on
the phase space at the time ¢. Specifically, if © is any domain in the phase space, then
the expected number of gas molecules with their phase coordinates bzionging to © at
the time { is given by the integral

f f(t, z; , ¢:) dzx de. 1.2)

The coeflicients b, , ¢ = 1, 2, 3, on the left-hand side of (1.1) are the components of the
external force field which is acting on the gas at the time ¢.

The integral on the right-hand side of (1.1) is known as the collision integral. Its
integrand gives the rate of change of the phase density function due to possible collisions
(or encounters) of the molecules with phase coordinates (z: , ¢;) and (a, , é;) at time ¢.
After the collision the phase coordinates become (z; , ¢;’) and (z; , é.’), respectively,
and the symbols {, f, {, // denote simply the values of f at (¢, . , ¢;), ¢, ., &), @, z: , ¢.),
@, z; , é), respectively. In order to evaluate the collision integral, we must know the
law of intermolecular forces in an encounter. Then by use of analytical mechanics we
can determine (c,’, é,") as a function of (c; , é;) and the relative position of the molecules
before the encounter (cf. [2]). Thus the integral is taken with respect to ||{€¢ — c|| db over
all possible relative positions and with respect to dé over all possible velocities é; . The
value of the collision integral is then a function of (¢, z, , ¢;). We shall review the mechanics
of an isolated encounter in the next section.

The main purpose of this note is to prove a transformation property of the Boltzmann
equation. We define a Euclidean transjormation by
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t*F=t+a z*=QsMz; +d:t), ¢.*=Qu{M)c; + Quz; + di(t), (1.3)

where « is a given real number, Q;;(t), ¢, j = 1, 2, 3, are the components of a given rota-
tion matrix, and d;(t), ¢ = 1, 2, 3 are the components of a given translation vector at
each time . Both Q;;(t) and d;(f) are assumed to depend smoothly on t. We denote the
Euclidean transformation by *. It is an automorphism of ®" such that

*@, xi, c) = (% x.% ¢.¥). (1.4)
Under the Euclidean transformation the phase density function f(¢, z, , ¢;) is transformed
into a new function f* = *[f] = fo*7', ie.

f*(t*) .’13.*, C,'*) = f(t; X ) C;), (15)

provided that the arguments are related by (1.3). We call 7* the Euclidean transformation
of f. Our main result is the following

TueoreMm. If f(, z; , ¢;) is a solution of the Boltzmann equation associated with
the external force b; , then its Euclidean transformation f*(t*, z;*, ¢;*) is a solution of
the Boltzmann equation associated with the external force b,* which is related to b; by

b* = Qi;(0b; + 2Q;,(Mc; + i)z, + di®), (1.6)
where the arguments (t*, z.*, ¢;*) and (¢, . , ¢;) of b,* and b, , respectively, are related

by (1.3). Thus (1.1) is equivalent to

%* * *
g_i* + c.* ;af:—* + b;* Baci; = f ||é* - c*H (f*1f* — f*f*) dib* dé*. 1.7

We prove the preceding theorem as follows.

2. The collision integral. As explained in the preceding section, the collision integral
is an operator on the phase density function f(t, z, , ¢,), and the result is also a function
of (¢, z;, ¢;). For definiteness we denote this operator by C, i.e.,

cin = [ lle = el (71 — 1) dw @)

where a particular but unspecified law of intermolecular forces is understood. We have
the following
LEmMmA 1. The operator C commutes with the operator *:

Co*x =%0C (2.2)

or, equivalently,

[ e = el g — ey aweder = [ lle = ell g7 — Pavae @3

provided that the arguments (t*, z.* ¢;*) and (¢, z. , ¢;) are related by (1.3).

To prove this lemma we review first the mechanics of an isolated collision or an
isolated encounter of two molecules, which are regarded as two Newtonian mass points.
As usual, we assume that the law of intermolecular forces has the component form

(R —tID# —r), ©=1,23 (2.4)
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where £ and r are the position vectors of the two mass points, and where h is a certain
function of the distance ||f — r|| between the two mass points. The particular form of
characterizes the nature of the interaction, but the proof of the lemma is independent
of the choice of A.

Suppose that the molecules have asymptotic velocities ¢ and & before the encounter
(i.e., ¢ and ¢ are the limiting velocities of the molecular trajectories as time tends to
negative infinity). Then under the law of forces (2.4) the molecules approach asymptotic
velocities ¢’ and & after the encounter (i.e., ¢’ and & are the limiting velocities of the
molecular trajectories as time tends to positive infinity). By use of analytical mechanics,
we can express ¢;” and é,’ as functions of ¢, , é; , and a set of collision parameters, which
characterize the relative positions of the molecules before the encounter. For definiteness,
let us denote the functional relation between the asymptotic velocities (c; , é;) and
(¢, é;") before and after the encounter by

(cilr 61',) = (I)(ci ’ é; ,’lj)), (25)

where % denotes collectively the collision parameters.

Since the intermolecular forces depend only on the relative position vector # — r
between the molecules, it follows from analytical mechanies that when the asymptotic
velocities (c; , é;) before the encounter are changed to (c.*, é,*) with

¢* = Qiicj + 2z y é&* = Qiiéi + z:, (2-6)

where Q,; and z; are the components of a constant rotation matrix and a constant
translational velocity vector, the corresponding asymptotic velocities (c;’, é;") after the
encounter are transformed to

¢ = Quei’ + 2, &M = Qb + 2, 2.7)

provided that the collision parameters are “rotated” and ‘“‘translated” by the same
Q.; and z; to a new set ®*. It should be noted that, while the asymptotic velocities are
the limiting values of the molecular trajectory velocities, which depend on time, the
rotation matrix @,; and the translational veolcity vector z; in (2.6) and (2.7) are not the
limiting values of certain time-dependent rotations and translations. Both Q;; and z; are
just a constant rotation and a constant translational velocity. The proof of (2.7) is
therefore a trivial consequence of analytical mechanics, since the law of forces (2.4)
allows the whole trajectories of the molecules be transformed by a constant rotation @.;
and a constant translational velocity z; without violating Newton’s equations of motion.
In particular, the asymptotic velocities of the molecular trajectories are transformed by
(2.6) and (2.7), and the collision parameters are also “rotated’’ and ‘‘translated” ac-
cordingly.

As a result of (2.6) and (2.7), we see that the function ® in (2.5) for an isolated
encounter possesses the following transformation property:

Qiici’ + 2:, Qiié/ + 2:) = ®(Quic; + 2., Quii + 2, , %) (2.8)

for all constant rotation matrices Q,; and all constant translational velocity vectors z; .
This transformation property of & is the key to the proof of the lemma, as we shall
now see,

Since the collision integral (2.1) is taken at a fixed time ¢ and at a fixed position z, ,
when we change its argument (¢, z. , c.) to (t*, z.*, ¢.*) by (1.3), we can change its inte-
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gration variables 1 and é; to w* and é;*, where ¥* is “rotated” and ‘““translated” from
w by the particular rotation matrix @.; and the particular translational velocity z; :

Q. = Qu;(), 2z = Q.;(Ox; + d:() (¢ and z; are held fixed), (2.9)
and where é;* is likewise transformed from é; by
6* = Quibs + 2. = Q06 + Qi(Oz; + di(t). (2.10)

Always.remember that both ¢ and z; are held fixed in the collision integral, so that the
particular rotation @;; = Q.;(t) and the particular translational velocity vector z; =
Q.:()z; + d;(@t) used in the change of variables are both constant. We arc only trying
to calculate the collision integral by using another set of integration variables.

Now since the change of integration variables (2.10) from é; to é.,* is isochoric on
the velocity space, viz.

a(CAI*, 62*’ 63*)

a(él ;62 )63) h 1 (2'11)
(the same can be said about the transformation of the collision parameters from % to #w*
since a “rotation’ and a ‘‘translation’ are volume-preserving on the space of collision
parameters), and since the domain of integration is the whole velocity space and the
space of all possible collision parameters, by Leibnitz’s rule the numerical value of the
collision integral is invariant under this transformation. But when we change % to ®*
and (c; , é;) to (c.*, é;%), by using the property (2.8) of ®, we know that the corresponding
values of (¢, ¢;') in the integrand are transformed to (c.*, é;*) in (2.7) with @.; and 2,
given by (2.9). As a result, under this change of integration variables the collision
integral (2.1) can be rewritten as

f [|&* — c*|| (F¥F* — f*f*) dw* dé*, (2.12)

which is precisely the collision integral C[f*] of the phase density function f*. Since the
numerical value of the integral is invariant under the change of integration variables,
“we get (2.3). Thus the lemma is proved.

Remark. For the special case where the molecules are modeled as rigid-elastic
spheres of diameter ¢, the collision integral can be written explicitly as

%"2 f |(éi - c.—)d,-| (f(t, x: 5 e + qud;(é; — ef(t, xi y & — &.d;(¢; — c)

— f(t, x: , c)f(t, z: , &) dib dé,  (2.13)

where &; denotes a unit vector and di denotes the differential element of solid angle on
the unit sphere at &; . The change of variables from (¢, z , ¢;) to (t*, z.*, ¢;*) by (1.3),
the change of integration variables from é; to é,* by (2.10), from &; to &;* by

a:* = Qi,q;, = QN4 , (2.14)

and from the element of solid angle dib &; to div* &,* jointly reduce the integral (2.13)
to the integral
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%0'2 f |(é,-* - Ci*)&i*l (F*(t*, a:*, c* + a*a;*@E* — ¢¥)
SEE*, ¥, 6 — @ (G — )
— X(t*, ¥, )R>, x*, 6.*)) di* dé¥, (2.15)

which is precisely the collision integral of the Euclidean transformation f* of f. Notice
that the key to the form (2.15) is the fact that

e* + a28*EF — o) = Qi) (e + 4,66 — &) + Qi + di()
and (2.16)
EX — &% — o) = Q@ — @dé — ) + Qidz; + di(®)
which imply, respectively, that
@, z.*, o* + a*e*¢é* — ¢%) = *(@¢, z., a.4,(¢ — ¢;)
and (2.17)
(t*, z.*%, é* — @.F&*(E* — ¢;%) = *(@, x. , &.4;(¢; — ).

The condition (2.16) is the special case of the general condition (2.8) for collisions of
rigid-elastic spheres.

Before closing this section we should point out that while the transformation property
(2.8) of the collision relation & is valid for a constant rotation @,; and a constant trans-
lational velocity z; only, its consequence: the transformation property (2.3) of the colli-
sion integral, is valid for any Euclidean transformation (1.3), where Q;;({) and d.(t)
arc not constant but arbitrary smooth functions of ¢. The use of the asymptotic velocities
in the collision integral is one of several basic assumptions admitted in the derivation
of the Boltzmann equation. Clearly this assumption cannot possibly be exact except in
the rigid-elastic sphere case where the collision is an impact, since on the one hand it
generally takes an infinitely long period of time and an infinitely long curve in space to
achieve the asymptotic velocities, but on the other hand both ¢ and z; are held fixed in
the collision integral. However, the discrepancy that exists between the mathematical
definition of the collision integral and the actual physical nature of molecular collisions
in a gas is not of concern to us here. What we have shown is simply a mathematical
property of the collision integral—as it is defined mathematically in the kinetic theory.

The logical inconsistency in the definition of the collision integral amounts to the use
of the collision relation ® as if it were an tmpact relation. Equivalently, there are two
separate sets of space-time variables involved, one set for the derivation of the collision
relation ® and one set for the collision integral C. Once the collision relation ® is derived,
the first set of space-time variables is completely forgotten. While the rotation Q.; and
the translational velocity z; must be constant with respect to the first set of space-time
variables, they are not necessarily constant with respect to the second set of space-time
variables. Indeed, once & is derived, the condition (2.8) is a mathematical identity for ®
and is valid for all [Q;;] € $0(3) and all (2;) € ®®. In particular, we can apply (2.8)
to [Q:;()] and [2:(¢, x;)), where z; and ¢ are the space-time variables in the second set.

3. The streaming terms. The left-hand side of the Boltzmann equation (1.1) is
known as the streaming terms. It defines a differential operator on the phase density
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function f(t, z; , c.), and the result is a function of (¢, z; , ¢;). For definiteness, we denote
this operator by D, i.e.

_d 9 of
D[f] = at + ¢ 3z, + b; 3.’ 3.1)
where a particular external force field b; is understood. For obvious reason we denote the
streaming terms on the left-hand side of (1.7) by D*[f*], i.e.,
af* of* af*
*[ % *x 9 ok 2
D*[f*] = Yo + c.* e + b, 6% 3.2)
where the external force field b,* is given by (1.6). Of course, D*[f*] is a function of
(t*, x.* c.*). We have the following
LEmma 2. D*f*] is the Euclidean transformation of D[f], i.e.,

D¥*o* =%o0D (3.3)
or, equivalently,
af* f of* _ of f f
a0 +c* 75 + b* %c* = ot +c + b, (3.4)

provided that (t*, z.*, ¢.*) and (t, x; , ¢;) are related by (1.3).
To prove this lemma we differentiate (1.5) with respect to ¢, z; , and ¢, , respectively,
and we use the chain rule based on (1.3):

of _ of* 31‘ of*

at at*'l'(Qn :+d) t:c1+any+d)a‘*r

Sf _p O 5 Of*

axi - Qu ax + Qn ac'* ) (35)
o _ o O

ac; Qs ac;*

Now, forming the streaming terms D[f] and using the formula (1.6) for the external
force field b,*, we obtain (3.4). Thus the lemma is proved.

The main theorem now follows directly from Lemmas 1 and 2, since numerically
the two sides of (1.7) are equal to the corresponding two sides of (1.1) provided that the
arguments (t*, z.,* c¢;*) of the former are related to the arguments (¢, z; , ¢;) of the
latter by (1.3).

Remark. In the physical interpretation our main theorem says simply that if a
given process of a gas, as characterized by the phase density function (¢, z. , ¢.), is
compatible with the external force field b, according to the Boltzmann equation, then
the process, which is the result of superimposing a rigid motion on the given process
as characterized by the Euclidean transformation f*(¢*, z.*, ¢,*), is compatible with the
external force field b;*, which is related to b; by (1.6). This result is only natural, since
(1.6) is also the transformation law for the accelerations of the molecular trajectories
associated with the Euclidean transformation (1.3), i.e.,

* = QuMa; + 2Q:;(Mc; + Qii(®)x; + di), i=1,23. (3.6)

By Newton’s law of motion a; is equal to b, and a.* is equal to b;*. As a result, if a given
y
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molecular trajectory is compatible with b; , then its Euclidean transformation is com-
patible with b.,*. In this sense our main theorem is consistent with the transformation
property of Newton’s equations of motion.

It should be noted, however, that the main purpose of proving the transformation
property is not to find any new exact solution of the Boltzmann equation. True, our
main theorem says that the Euclidean transformation of any exact solution of the Boltz-
mann equation relative to an external force b is an exact solution of the Boltzmann
equation relative to a new external force b*, which is related to b by (1.6). But the point
is, when b has a simple form such as b = 0, b* is generally rather complicated. The only
useful case is probably the case when Q.;(t) = 4.; and d;(t) = ¢g; = constant. In this
case, if b; = 0, then b,* = ¢, . So any exact solution of the Boltzmann equation under
no external force can be transformed by a special Euclidean transformation:

t* = t + a, z,‘* = X; + %g.‘tz + h,t + l.' y C.'* = C; + g,t + h; (3.7)

into an exact solution of the Boltzmann equation under a constant external force b,* = g,.
Other than this simple case, the new external force b;* required to maintain the new
solution f* cannot really be produced physically in a laboratory.

The main application of the transformation property is to prove that (1.7) is the
governing equation of the phase density function relative to an arbitrary frame of
reference which is related to an inertial frame by the Euclidean transformation (1.3).
Under such a change of frame the new external force b,* given by (1.6) is just the apparent
external force of the original external force b, in the new frame. In this sense the equation
(1.7) is stated without proof by Miiller [1, Eq. (2.1)], who used it to derive the Maxwellian
iterations of the macroscopic quantities relative to an arbitrary frame.

If we use Maxwell’s definitions for macroscopic quantities such as the average velocity,
the average acceleration, the stress tensor, the heat flux vector, the temperature, the
internal energy density, efc. in any given process of a gas, then the equivalent sets of
Maxwell’s equations of transport obtained from (1.1) and (1.7), respectively, are con-
sistent with a basic consequence of the principle of objectivity in continuum mechanics.
We shall explore the relation between our main theorem here and the principle of ob-
jectivity in continuum mechanics in another paper, where the transformation properties
of the approximate solutions of the Boltzmann equation, obtained by various iterative
processes, will be considered.
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