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Summary. The difference between the fundamental solutions of differential equa-
tions governing the same physical phenomenon in two different physical media is in-
vestigated. A stationary expression of this difference is established, leading to a Ritz-
Galerkin procedure. The Ritz-Galerkin system is solved analytically, providing a
representing series for the difference of the two fundamental solutions as a functional
of either one or the other of these functions. The convergence of the series is a consequence
of its construction itself. Physical examples are considered which show that the con-
vergence rate can be partially controlled.

Introduction. Many physical phenomena are well described by partial differential
equations with variable coefficients—for instance, the propagation of acoustical waves
in the sea, of light in the high atmosphere, or the vibrations of complex mechanical
structures. The literature on this topic is full of different methods leading to various
approximations [1], Nevertheless, no general method seems to have been developed
up to now.

It is well known that the solution of any boundary-value problem can be reached
when the fundamental solution of the governing equation, defined in the whole space
and satisfying a suitable Sommerfeld condition, is known. For this reason, this paper
will deal with the construction of such a fundamental solution; that is, the field of a
point source in the indefinite space is investigated.

Let two physical media be described by two elliptic operators £ and A governing
the same physical phenomenon, but corresponding to two different physical data. Let
g and T be the fundamental solutions of £ and A respectively which satisfy a Sommerfeld
condition expressing that no energy is sent back by points at infinity. Finally, assume
that £ and A differ on a bounded space domain, say co.

Generally, the different methods consider that one of the two operators, say £, is
the perturbation of the other, the fundamental solution of which is known. A perturbation
parameter is pointed out which is assumed to be small according to some norm. The
unknown solution is expressed, as a functional of r, by a series of the successive powers
of the perturbation parameter. The principal disadvantage of such a method is that the
convergence of the series is obtained for the perturbation parameter less than a certain
bound.

* Received July 1, 1974. This work was developed during the academic year 1972-73, which the
author spent at the Department of Mathematics, Stanford University. He wishes to express his gratitude
to Professor Harold Levine for his helpful advice and criticism.
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Central to the present analysis is the fact that it is not possible to decide which of the
operators £ and A is the perturbation of the other. This remark implies that the quantity
to be investigated is the difference 9 — r between the two fundamental solutions;
furthermore, g — T must have an expression symmetric with respect to the two media.

It is well known that the difference g — T can be interpreted as the field of fictitious
sources lying in to. But the sources appearing in the first medium have to be associated
with the sources in the second medium in such a way that their respective radiations are
identical, i.e. described by a unique function.

The main result of this paper is the construction of a convergent series representing
the difference g — T between the two fundamental solutions. To reach such a series,
two bases {^„} and {<?„} of /.2(co) are associated according to the fact that the radiation
in the first medium of a source \pn must be identical to that of <pn in the second medium.
Next an approximation of g — T is sought by a Ritz-Galerkin method applied to a
suitable variational formulation of the problem. The Ritz-Galerkin system is solved
analytically which leads to a formal series representing g — T, the convergence of which
is proved. If one of the two fundamental solutions is known, this series provides the other.

In the first section, a variational formulation of the problem is proposed. The second
section deals with the construction of the basis {ipn] as a functional of a given basis {#>„}.
The solution of the Ritz-Galerkin system giving an approximation of Q — T is inves-
tigated in the third section; the series representing g — r is derived. The fourth section
proposes several examples in acoustics and mechanics; furthermore, it is shown how a
suitable choice of the first basis function <p0 leads to a good approximation of g — T
by the first term of the series.

1. A variational formulation of the problem. Let A be the governing operator of
some physical phenomenon in the space R"(n = 1, 2, or 3). The field r,(X) due to a
point source at S and satisfying a suitable Sommerfeld condition at infinity is the
fundamental solution given by:

A.Yrs(X) = 5„(X) + Sommerfeld condition (1)

(the subscript X in Ax stands for derivations with respect to the variable X).
Let £ be the governing operator of the same physical phenomenon but corresponding

to different physical data. The corresponding fundamental solution g.(A^) is given by:

£vg»(X) = 5,(X) + Sommerfeld condition. (2)

1. Hypotheses and notation. The operator A and £ are elliptic partial differential
ones of order 2m with C°-coefficients (they can include integral operators). The difference
of these operators, say I = £ — A, is assumed of order less than 2m and, for simplicity,
with bounded support w.

Let '£, 'A, and 'I be the transposed operators of £, A, and I, respectively; they are
defined by:

(/, '£<(,) = (£/, v),
(/, 'Av) = (A/, <p),
(/, %) = (If, *>),

where / is any distribution on R" and <p any infinitely differentiable function with bounded
support (<p G £>(Rn)).
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2. A variational jormula. From Eqs. (1) and (2) the following relationships can
be derived:

g,(X) - r.(X) = -r,(X)[i,g.(y)] = -&(mr.(y)] (3)
where

r„(X)[ipg.(y)] = f r,(X)ljs.(y) dy,
J u

UX)[l.T.(y)] = [ S.(W.(») dy.
J u

When X belongs to to, the first equality (3) is an integrodifferential equation in g,(X),
r,(Z) being known; the second equality is an equation in r,(X), g„(X) being known.

Eqs. (3) make possible the construction of several stationary expressions of 8,(2) —
r,(2); in particular, one gets:

8.(2) - r.(2) = -8.(Z)[,i,r,(2)] - gx(2)[Jxr,(X)]

+ - [s.(X)['ixrx(2)]][i.r.(2)] (4')
ir.(Z)[,ixrx(2)]

(the third term may have the two expressions mentioned above). Eq. (4') is obtained
with the help of the trivial equality:

[g.(X) - r,(X) + g,(X)[kr.(Z)]]['krx(2)] = o.
Expressed as in (4'), the difference g,(2) — T,(2) is stationary with respect to lxT,(X)
and to 'lxTx(2) because of the equality

rx(2)fcr.(Z)] = r.(X)[«zxrx(2)].
Similarly, an expression of g.(2) — I\(2) can be derived which is stationary with

respect to lxg,(X) and 'lxgx(2):

8.(2) - r.(2) = -r,(X)['ixgx(z)] - rx(z)[ixg.(X)]

+ |Sx(2)[^8*(Z)] - [rx(z)['itg,(2)]][ixg.(X)]. (4")
lg.W['^gx(2)]

When T,(2) is assumed to be known, the use of the stationarity of (4') will provide a
series representing g„(2) — T,(2); when g„(2) is known, expression (4") must be used.

2. The basis {\pn\ associated with any basis {<fn\. Let j<p„} be any orthonormal
basis of L2(u), the space of all square-integrable functions in co. The relationship:

UX) = <pn{X) + TAXXhM]

= <fn(X) + £ T„(X)lytf>n(y) dy (5)

defines a set of functions \pn(X). Let us prove that the set ' ^JX)} is another basis of
L\u>). This is true if any function f(X) £ L2(w) orthogonal to all the 4*n{X) is identically
zero. The orthogonality relationship
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11*(X)UX) dx = £ /*(X)[^„(X) + £ r,(X)U(*/) dy dX = 0, V n (6)

(/*(X) = imaginary conjugate of j(X)) can be written in the form:

f <Pn(X) [/*(X) + 'lx J f*(y)rx(y) ctyj dX = o, V n. (7)

Because of the completeness of the {^n(X)[ basis, this implies:

f*(X) + % J f*(y)Tx(y) dy = 0, Vl£u. (8)

It is easily seen that a solution of any equation of the form:

u(X) + % [ u(y)Tx(y) dy = v(X), XE « (9)

is given by

u(X) = 'Ax f 9x(y)v(y) dy
J 0}

because of the facts that 'I = '£ — 'A and l£xQx(y) — SU(X), 'AxTx(y) = <5„(X). The
unicity of the solution of (9) can be proved as follows. Let the existence of two different
solutions Ui and u2 be assumed; the function

U{X) = [ [Ul(y) - u2(y)]Tx(y) dy
J u

must be a solution of the equation

'£xU(X) = 0

satisfying the same Sommerfeld condition that Tx(y) does; U(X) is consequently zero,
and so is the function ' AxU(X), which is m,(X) — u2(X). This last conclusion is incon-
sistent with the starting hypothesis. The only solution of Eq. (8) is /*(X) = 0, which
proves that the set {^„(X)| is a basis of L2(co).

In a similar way we can define a third basis of Ij (co) by:

•MX) = MX) + r x{y)['lMy)]

= <Pr,(X) + [ Tx(y)'lu<pn(y) dy.
J to

(10)

Finally, let $„(X) and '$n(X) be the functions

UX) = Tu(X)[luM] = f ru(X)ly<pn{y) dy, (11)
•' ai

'UX) = rx(y)['lv<pn(y)] = £ rx(yYl#n(y) dy. (12)

It is easy to see that:

Ux) = &(X)[iM], ai')
1UX) = g x(y)\'i:Uy)]. (12')
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3. Approximation and expression of 8.(2) — r,(2). As a first step of the present
investigation, a Ritz-Galerkin method is applied to provide a linear algebraic system,
the solution of which enables the construction of an approximate representation of
g,(2) — r,(2). The second step is devoted to the expression of the analytic solution of
this system, leading to a convergent representing series for 8.(2) — I\(2).

1. A Ritz-Galerkin method. Let us look for approximations in the distribution sense
of r,(X) and 1^(2) in the form:

r.(X) ~ E b.'ux)
J =0

N

rx(2) ~ E fux)
1=0

Expressions (13) lead to:

S.(Z)['ixr,(2)] =* t %{*)

(13)

J = 0

N

Sx(2)[kr.(X)] ~ E b.'fiV)
1-0

Tx(2)[lxT,(X)] &. V [ 'MX)lxMX) dX (14)
» = 0 7=0 J <J)

b.V [ 'Ijc'UWMVdX.
1=0 J = 0 Ju

Eq. (4') is approximated by:

8,(2) - r,(2) ~ - E bj 'ip,(s) - E b;h{2)
i= o

+ E E &.V f 'HX)lxMX) dx-zib &. V [ <15)
i=0 j=0 i=0 7=0 I

Now let relation (15) be stationary with respect to b,' (i = 0, 1, ■ • • , N), one gets:

IV,.(X)J^(X) i-0, 06)

(In (15) and (16) the integrals over co have the two mentioned expressions). The linear
algebraic system (16) determines the insuring the stationarity of (15). The corre-
sponding approximation of 8.(2) — r,(2) is given by:

8.(2) - T.(2)~ - E '&(«)• (17)
7=0

In a similar way, it is possible to determine the b,1 by the system

E b: £ % 'uxhtix) dx = 'i(s), j = o, i, • • •, n, (160

leading to the approximation:

8.(2) - T.(2) ~ - E 6,^,(2). (17')
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Remark. It is important to notice that the accuracy of the approximations (17)
or (17') can be characterized by the accuracy of the approximations (13).

2. Explicit solution of system (16) and re-presentation of S»(2) — r,(2) by a series.
Let 7/(2) be the approximation of S«(2) — I\(2) given by formula (17). Noting the
coefficients of system (16) by Du , we define the following determinants:
Ds — determinant of the D, , matrix,

3Djv($<(2)) = deter

'SDw('iA,(s)) = deter

A>o All ' ' ' D0ff-i ^0(2)

Dio Du ■ ■ ■ Dxfi-1 <Ai(2)

0 DN1 ' • • Dnn-I <Aiv(2)

Doo D0i • • • D0n-. 1 lAo(®)

D10 Du ■ ■ ■ Dijv_, 'Ai(s)

Duo DNi • ■ • -Djvjv-i &v(s)

(18)

(18')

Let b?'' be the solution of system (16) corresponding to (i = 0,1, ■ ■ • , N — 1; j =
0,1, ■ ■ • , N — 1), and let /32' and B' be defined by:

= 61' — 6s'', j = 0, 1, • • • , AT 1,
o N l. NP? — b? ,
Bz' = 0, i = 0, 1, ■ ■ ■ N - 1,

Bj = ^jv(2) — ^ bx 'DNj .
i-0

Similarly, the /?,' and B,' are defined by:

13,' = 6„* — 6,1', t = 0, 1, • • • , N — 1,
O ^ £ NP. = 0. ,
B.' = 0, j = 0, 1, ••• ,N - 1,

B/ = 'Ms) - Z •
i-0

It is easy to show that the j3s' and the are the respective solutions of:

E Dufc' = Bz', i = 0, 1, ••• ,tf, (19)
J = 0

and

£ AA' = B.', j = 0, 1, ••• ,iV, (19')
i = 0

these systems being an immediate consequence of the systems that the &2', b,\
and b,'% satisfy. The equality
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7/(2) - = -BSa." (20)
is true because of

E E/V-D.A'' = E/V «&(•) = E^'V = 5/0/.
i = 0 j = 0 j = 0 i =0

The expression of /3/ as a function of £/ is easily found because all the B(j = 0, 1, ■ ■ • ,
N — 1) are zero:

P.n = B»^. (21)
JJn

Now the 5/ and B.N are to be determined. For this purpose, let fs' and g,' be defined by:

b*' = -//'//, b/ = -g*/g,
/ and g being arbitrary constants. The constants /2', /, i?,', and <7 satisfy:

E A,// + &(2)/ = 0, t = 0, 1, • • • , N - 1,
1-0

E A,/,' + (&(2) - 5/)/ = 0,
I =0

E + '^(s)? = 0, j = 0, 1, • • • , AT — 1,
»=0

E + CM*) - B,N)g = 0

because of (19) and (19'). These two systems will have a nonzero solution if the deter-
minants of their respective matrices are zero. This implies that and B,N are given by:

iDy(&(2)) '®nCUs))
n' nUN-1 N— 1

By using this last result, expression (20) becomes:

£>y(^i(2)) '^('^(s))
7. (2) - 7. (2) = - y: 77- • (22)

U N — 1 -k'jV

Finally, making use of the trivial equality
AT / N N-l\ , / N-1 AT-2\ i . / 1 On , O

7 =(7 — 7 ) + (7 — 7 )+■•• + (7— 7)+7

and letting N grow to infinity, we get the representing series desired:

&(2) '1,(8) A, P<(&(Z)) ' £><('&(«))

[ Vo(X)ixux) dx
• ' O)

9.(2) - r.(2) = -   - E ' (23)

the convergence of which will be proved later.
Remarks. 1) This result is very close to that given by S. Bergmann [2] for the Green

functions of the inner boundary-value problems concerning the Helmholtz equation with
purely imaginary wave parameter. The present investigation avoids Bergmann's assump-
tion that the operator £ defines a positive definite L2-norm.
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2) In formula (23), the two media described respectively by the operators A and £
play exactly the same role because the \p, and the 'xp, can be expressed either with Y or
with g. This is in agreement with the fact that each medium can be considered as the
perturbation of the other.

3. Proof of the convergence of the representing series. The convergence of (23) is
nothing other than the convergence of the Ritz-Galerkin procedure here proposed. The
proof is obtained by showing that the sequence of approximations of '/.yrY(2) by

%r*(s) =* E ** % 'MX)
1=0

is convergent in the distribution sense; that is:

lim f dX f hxr,(2) - E bzf % 'UX)\w(X, 2) d2 = 0,
N—*co J u JRn L 7=0 J

V w(X, 2) G D(w X R").

If !Zi-rx(S) £ L2(w), the convergence is taken in the L2 sense because {'\pj(X)} is a
basis of L2(co).

Using system (16), it is obvious that:

E [ dxjr % 'UXteiiX) f bs'w(y, 2) dX
t = 0 Jw j = 0

= ib<P<*(y) [ dX<p,(X) f 'lxrx(2)w(y,2)dZ (24)
t=0 J u •'R"

(<p*(y) is the imaginary conjugate of <p,(y)). But, because {<^„} is an orthonormal basis
of L2(u), for large enough N the functions defined by the first and second member of (24)
are as closed as desired (in the L2(o>) sense) to respectively:

E % [ bz'w(y, 2) d2, f 'lvTv{~Z)w{y, 2) d2 (25)
7=0 •'R" •'R"

Eq. (24) thus implies that the functions given by (25) can be made arbitrarily closed
to each other by choosing N large enough. As a consequence, for any given small number
e > 0, a M exists such that:

f f r E 6x' % lti(y) - '^r„(2)lw(y, 2) d2
IJW L 7 =0 J

dy <e, V N > M.

This proves the required convergence, and, consequently, that

lim E &*'&(«) = 9.(2) - r.(2)
N—*co 7=0

in the distribution sense.
This result can be improved, leading to a uniform convergence. As a well-known result

about the behavior at S = 2 of fundamental solutions of elliptic partial differential
equations, the difference is a continuous (to — 1) times continuously differentiate
function; the functions defining series (23) are continuous functions of their arguments;
this implies the uniform convergence of this representing series.

4. Remark on the case of an unbounded domain w. If is an unbounded domain,
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the convergence of the integrals in the variational formula (4') is not necessary insured.
However, it is possible to consider (4') as a formal variational principle and to make use
of it in solving the problem in the way proposed formerly.

Let {(p„(X)} be a basis of Z/(a>) orthogonal with a weight o>(X). As in Sec. 2, a new
basis {\j/n{X) J can be defined

UX) = u(X)vJX) + £ Yu{X)lMy)*M) dy (5*)

and associated with the set

in(X) = f Ty(X)ly(w(y)<pn(y)) dy
J u

= [ SvWkiniy) dy. (11*)
J u

In the same way the sets '\pn{X) and l^n{X) are defined by

'MX) = «(X)*.(X) + [ rx(y) 'lMy)M) dy (10*)
u

'tn(X) = [ rx(y) 'ly(.u(y)<pn(y)) dy
J CO

= / 9x(y) 'lv 'My) dy (12*)

The convergence of all the above integrals is insured by the presence of the weight
function. Now let Da be the integrals

Du = ( d,(ZV,(Z) 'lx'MX)dX.

Dv, SD^(iA.(2)) and '©^('^.((S)) are defined as in Sec. 3.2. We get for g„(2) — r„(S) the
representing series given in (23). The convergence of this series is proved again.

4. Physical examples. This section is mainly devoted to Helmholtz equation; one-
dimensional examples are considered and it is shown that <p0 can be chosen in such a way
that g„(2) — T,(2) is approximated well by the only first term of the representing series.
The first physical example is devoted to the plate equation: in the case of a point mass
density perturbation of a constant thickness and mass density plate the first term of
series (23) corresponds to the exact solution, whatever the (pn are.

1. The plate equation jor transverse vibrations [3], The plate operator corresponding
to a constant thickness and mass density plate driven by a harmonic force is given by:

A. = A.2 - ^ , (26)
-^0

with w = circular frequency, m0 = mass density per unit area, and D0 = rigidity param-
eter.

For a plate with variable thickness and mass density, the corresponding operator
takes the following form in rectangular coordinates (x1 , x2):
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£. - 4.' + 2 8"d(P-D,>erad 4 + A(P, - M a.

_l_ J_ d\D(l — v) — Do(l — Pp)]  d2. _ mu2 ■ (27)
! Z) 3.r, 3x, dx, /)

In this expression the rigidity D, the Poisson's ratio v and the mass density m are
assumed to be constant and equal to D0 , v0 , ma respectively outside some bounded
domain w.

The fundamental solution of (27) satisfying the Sommerfeld condition deduced from
the energy conservation principle can be expressed in term of the fundamental solution
of (26) by the series (23). Assume that the rigidity of the plate and its Poisson ratio are
constant; the mass density is assumed constant, different from mQ , and equal to m in
a small circular domain w. Let u decrease to zero and m increase to infinity in such a way
that the total excess mass M = (wi-area of co) is constant; the limit is obtained for a
perturbating point mass M at a point X0 ■ It is important to notice that the approxima-
tion obtained by taking into account only the first term of the representing series is
the exact solution of the problem

S.(z) - r.(2) -  rA-.(z),

whatever the function <p0 . When a perturbation method is considered, it is generally
impossible to obtain approximate formulas providing an exact solution in this case.

Before ending this section, let us mention that the case of a fluid-loaded plate can be
solved in the same way b}7 using the solution given in [4] for constant coefficients. This
problem has a great importance in mechanical and acoustical engineering.

2. The Helmholtz equation with variable index. In this section one-dimensional exam-
ples are considered and the function ipu is chosen in each case to provide a one-term
approximation in good agreement with the exact solution. The operator £ is defined by

£-= ji + /c2[1 + P(X)]- -

the corresponding operator A being

d.
dXA. = + k.

£ and A being self-transposed operators, the function 'ipn , Sp„ , and ' 3D <(V„) are respec-
tively equal to \pn , \pn and D,(i^,).

The important question is how to choose the function <p0. This choice is derived from
the fact that the approximation of g(s, 2) — T(s, S) by the N first terms of series (23)
corresponds to the approximation of T(s, S) by:

. AT(s, 2) ~ X 7— == • (28)
i=0 J^N- 1 N

So, the first step of the analysis is to check that (28) is a good approximation formula.
First case: the perturbed region is X >0, and j>{X) = aX; the source S is in the

negative region. Let <pn(X) be defined by
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<p0(X) - exp (IkX — fiX), Re (/J) > 0

The function ip0(X) is thus:

to k* ay exp (iky - 0y) exP  ^dy

- cxp a'"' ftfor x<0-

exp (ikX) l2 / 1 , Uk(fi - ik) ,
" —ik~ k °W^W + _ 2ll)- «P

+ z«^iijexp(-«} tor x>0-

The corresponding approximation of T(s, X) for s < 0 and X > 0 is given by:

w ^ _ exp (ik(X - s)) p - ik j , , k [ 1 , 4ik(fi - ik) , ^
( ' x)=* 2a (/3 - 2it)* rp (-"Z) + 2i Li? + rtfi - 2ik)' exp (~m

+ (SI# - 2ifc)exp( "X'}{4(0 - i) + 2W - 2») [fl - 2ik + 03 — >7t)']} ' ^

The corresponding approximation for Q(s, X < 0) is:

c( Y n) _ exp (ik fX — g|) _ exp (-ik(X + s)) ka
W' ' 2ik 2ik 2*09 - 2t7c)4

^ ka  1 ik
4(/3 — zfc) 2i(/3 — t7c)(/3 — 2ik)/3 L(3 — 2ik /3 — ik)

If a//c is assumed to be small compared to 1 (slowly varying index), one can choose /3 real
satisfying the double inequality

a/k « (32/fc2 « 1,

and (29) becomes:

k
2i\c v 1 2ilc

r(S; X) ̂  exp_(iM|L_5)) |exp (_^z) + |V _ exp (_/3X)

- exp ( —/3X)]| (30)0
which is a good approximation for small fcX. This yields

8M)-r(8,Z)gg-|gBp(-^+Z» lor 2<0, (31)

which is in agreement with the asymptotic value of the exact solution given in [5] by

gCq y-i _ rfo yl - exp (-ilc(s + Z)) iHU3w(w) - ff-2/3(1) M
9(8,20 (s,S) 2{k iH1/3n)(w) + H_2/3n\w) '

2 k
w = - -•3 a
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Conversely a/k can be assumed to be large compared to unity (rapidly varying index);
with the assumption

1 « /32/fc2 « a/k,

expression (29) gives:

T(S]X) ~ —P ~ s)) (1 + 2ikX exp (-0X)) (32)

This is a good approximation for small and large kX. The corresponding approximate
expression of g(s, 2) — r(s, 2) is:

SC., 9 - r(s, 2) =* _«5ti=|!l+9). (33)

Here again we get the asymptotic value of the exact expression. As a conclusion of this
example, the following choice of <p0(X):

<Po(X) = exp
['

kX, 0 <a < 1/2,

provided an approximation of g(s, X) — r(s, X) which corresponds to the exact solution
for the two asymptotic cases a/k <SC 1 and a/k 1.

Second case: Here, again, the perturbed region is X >0; but

p(X) = [exp (V2 akX) - l]/2

which is a index variation closer to physical data than that considered above; the source S
is in the negative region. Using well-known results (for example see [5]), it can be proved
that the solution is given with the help of Bessel functions of imaginary index by:

8(., X) - r(s, % exp (~tg + X)) ■ x<0 (32)

with:

J = J-i/a(l/a), J' = J'-i/a(l/a).

For the two asymptotic cases a <3C 1 and a y> 1, formula (32) becomes respectively

Q(s X) - iYs X) exp (-ik(s + X))
S(s,A) r(s, ^) - 8v/2 2ik ' (32')

x^ _ X) - >/2 ~ 1 exP (~ifc(s + z))g(s, X) r(s, X) - V2 + 1 2ik (32")

Let ipo(X) have, here again, the form:

<p0(X) = exp (+ikX — fikX), Re (j3) > 0.

The expression for $0(X) takes the following form:

UX) - k' [ e"P ('\^ " X|) exp (iky) exp <-« S3L<-° V2 M ~_L dy

exp (— ikX) aV2  X < 0
4i (& + aV2 - 2i)(fi - 2i) '
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exp {ikX) / — a\/2 2i exp (—ftfcX)
4i 1/303 + a a/2) ~~ /3(/3 - 2i)

2i exp ( — aky/2 X) exp ( — fikX)\ „
(/3 + ay/2){/3 + ay/2 - 2z) J ' > '

This yields the following approximation of T(s, X) for s < 0 and X > 0:

T(s X) ~ exp (zfc(X - «)) -ay/2 /
{ ' ' ~ 2ik 2 08 - 2i)(/3 + a a/2 - 2i) \ P ( ^ '

_l_ _L [" ~~a"\/2  2i exp ( — /3fcX) 2i exp { — ay/2 kX) exp (— /3feX)~|
,/3(/3 + ay/2) P{i3 - 2i) (fi + ay/2){$ + ay/2 - 2i) J

—a y/ 2

+

4(/3 - i)(2/3 + a a/2 - 2i) 8i
iay/2

2 a2

.(308 + ay/2)(fi - 2i)(/3 + a\/2 - 2i)

/SOS + 2i){fi - t")(2/3 + a\/2 - 2i)
iay/2  "ll-1

- 2i)JJOS + a v/2)(/3 + a a/2 - 2i)(/3 + a a/2 - z")(2/3 + aA/2 - 2i)
and the approximation for g(s, X < 0):

Qfs X < 0) = exP 1^ ~ SD _ exp {-ik{s + X))  2a_ 
b ' 2ik 2ik '8i{P + ay/2 - 2i)\p - 2if

y/2   a^ [~_ 2a+ °.i U

(33)

+

(4/3 - i)(2/3 + ay/2 - 2i) 8i L/3(/3 + aA/2)(/3 - 2i)(/3 + aV2 - 2i)
iy/2

/3(/3 - 2i)(/3 - 0(2/3 + oa/2 - 2i)

iV2 rl'08 + a a/2)03 + aA/2 - 2z")(/3 + a a/2 - t") (2/3 + aA/2 - 2i)
Let a « 1; (33) gives:

T(s, X) ~ exp (ik{X — s)/2ilc exp (—/3kX), a « /3 real « 1, which is a good approxi-
mation. The corresponding approximation of g(s, X) — r(s, X) is

8(s, X) - r(s, x) ~ exp (~ ffljf + - , « < o, x < o.
This is the asymptotic value of the exact solution.
Conversely, assume a » 1; formula (33) will become

r(s, X, ̂  I [=1 + *> -1 exp <_ «]

Under the hypothesis /3 real <<C 1 and for small enough IcX, this last expression takes the
form:

r(s, X) ~ CXP W* ~ ^ I-
£XK> O
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The corresponding approximate solution is

S(s,Z)-r(s,Z)^gL(-^ + x))-

The reflexion coefficient (1/6) here obtained is not equal to the exact one
(V2 — 1)/(V2 + 1), but is pretty close to it: the error is about 3%.

In this second case it is again possible to derive an approximate expression of g(s, 2) —
T(s, 2) which is in good agreement with the exact formula for the two asymptotic
values of a: in fact the function

<p0(X) = exp k[i — e~aaa]X, a « 1

is consistent with the conditions imposed above.

5. Conclusion. In this paper the author has looked for a series representing the
fundamental solution of a partial differential equation with variable coefficients as a
functional of the known fundamental solution of another partial differential equation
of the same kind. Central to the investigation, a Ritz-Galerkin procedure is developed.

The first important result is that the functions used to establish the Ritz-Galerkin
system are derived in a suitable way from any basis of the L2-space constructed on the
domain where the two differential operators differ.

Because of its construction, the Ritz-Galerkin system can be solved analytically,
leading to a series representation of the unknown fundamental solution. The convergence
of this series is proved, whatever the starting basis. This is the second important result.

The third result is a consequence of the arbitrariness of the starting basis. Because
of it, it is possible to increase the convergence of the representing series by a suitable
choice of the basis. As has been shown in two examples, the first term of the series
can provide a good (even perfect) approximation of the solution.
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