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Abstract. In this paper, we develop a uniform asymptotic theory for the Dunn-Lin
equations which govern the stability of compressible boundary layers at moderate
Mach numbers. ‘‘First approximations’ to the solutions are derived when the Prandtl
number is equal to unity, in which case the structure of the approximations is especially
simple. The rapidly varying parts of the approximations can be expressed in terms of
certain generalized Airy functions and the slowly varying parts can be expressed in
terms of quantities all but one of which are well-known from the older heuristic theories.
The approximations obtained in this way are uniformly valid in a full neighborhood of
the turning point. Because of the simplicity of the present theory, it is expected that the
techniques developed in this paper can also be applied to other more general stability
equations for compressible boundary layers, such as the Lees-Lin equations.

1. Introduction. The asymptotic theory for higher-order differential equations
with a turning point has been greatly advanced in recent years through work on the
Orr-Sommerfeld equation which governs the stability of incompressible parallel shear
flows. There is also a closely related class of problems which arises from the study of
the stability of boundary layers in a compressible fluid. These equations—of which the
Dunn-Lin system to be discussed in this work is an example—are higher-order systems
with a simple turning point. Historically, the asymptotic theories for these equations
were direct generalizations of the heuristic techniques developed for the Orr-Sommerfeld
equation [6, 10], and thus they share much of the same limitations. The most serious
difficulty is the lack of uniformity of the approximations obtained, which leads to
considerable controversy as to the validity of their use in the subsequent formulation of
characteristic equations. Despite these facts, heuristic methods have proved to be
adequate for the incompressible case. The corresponding situation concerning compress-
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ible boundary layers is, however, less satisfactory. It should be remarked that all the
numerical calculations based on the existing asymptotic theories have failed to produce
correct curves of neutral stability. The failure of the older asymptotic methods has
not been fully understood, and it is of considerable interest, therefore, to re-examine
the problem in light of the recent developments relating to the Orr-Sommerfeld equation.

In the present work, uniform ‘first approximations’” have been derived for the
Dunn-Lin equations, the least complex of all the governing systems proposed for the
study of compressible boundary layer stability. Moreover, lest the present theory be
obscured by unnecessary technical complexities, we have restricted our attention to
the case where the Prandtl number is equal to unity. The present approach is closely
related to some methods developed by Olver [9] whereby he obtained uniform approxi-
mations to a certain class of second-order equations, and can be regarded as a direct
extension of the work of Reid [12, 13] on the Orr-Sommerfeld equation to higher-order
systems with a simple turning point. The techniques employed here also represent a
complete departure from the usual procedure of seeking approximations in terms of
viscous and non-viscous types (see, for example, [1] and [14]). Within the framework of
the uniform theory, such a distinction can no longer be maintained, and it has been
found to be more appropriate to characterize the approximations by their asymptotic
properties together with certain matching conditions. In the course of studying the
Dunn-Lin equations by the method of matched asymptotic expansions, it became clear
that when the Prandtl number is one, the inner expansions can be expressed to all orders
in terms of the class of generalized Airy functions first defined by Reid [11]. This suggests
that we seek uniform approximations to the solutions which exhibit precisely the same
symmetries in the complex plane as the generalized Airy functions. The structure of these
approximations can then be inferred directly from the inner expansions and by the use
of certain recursion formulae which the special functions satisfy. These approximations
consist of rapidly varying parts which can immediately be expressed in terms of the
generalized Airy functions, and slowly varying coefficients which can be derived if we
require that they be regular at the turning point and that the approximations themselves
satisfy the Dunn-Lin equations. In this respect, the present theory bears certain re-
semblances to the well-known comparison equation method (see, for example, [7]).
But the need of what would in our case be a ‘‘comparison system’’ has been eliminated,
as we seek uniform approximations asymptotically in terms of the generalized Airy
functions instead of the solutions of a suitably chosen ‘‘comparison system.” Moreover,
the procedure for determining the slowly varying coefficients can be substantially
simplified by matching the uniform approximations to their outer expansions within
their respective domains of validity. The approximations thus obtained are uniformly
valid in a bounded domain containing the turning point.

Finally, a remark on the use of the Dunn-Lin equations in the present analysis is
in order. Because of the various assumptions and approximations made in the course
of their derivation (cf. [2]), these equations must be regarded as a first approximation
to the other more complete governing systems which have been proposed, such as the
‘Lees-Lin equations [4]. It is generally believed that they become inaccurate for high
Mach numbers, since terms which enter into the second approximation then become
relatively more important and may not always be negligible. In fact, the inherent
inaccuracy of the Dunn-Lin equations has often been considered as one of the sources
of difficulties in obtaining neutral curves from them for high Mach numbers. Never-
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theless, an attempt by Lees and Reshotko [5] to develop an asymptotic theory based
on an augmented set of equations also unexpectedly ran into similar difficulties. Subse-
quently, it was determined through the numerical work of Mack [8] that both the
Dunn-Lin and the Lees-Reshotko asymptotic theories fail to produce accurate curves
of neutral stability for Mach numbers greater than 1.6, a value for which the Dunn-Lin
equations are expected to be adequate. Hence, aside from the question of accuracy of
the governing equations themselves in describing the physical phenomena, there appear
to be some fundamental difficulties which are mathematical in nature. In this connection,
the Dunn-Lin equations seem to be most appropriate for the purpose of the present
paper since, despite their relative simplicity, they clearly exhibit all of the essential
mathematical features of the problem. A satisfactory uniform asymptotic theory for the
Dunn-Lin equations can therefore be expected to clarify the corresponding difficulties
for the other stability equations of compressible boundary layers in general.

2. The governing equations. The Dunn-Lin equations were first proposed by Dunn
and Lin [2] in an attempt to deal with the stability of compressible boundary-layers
with respect to three-dimensional disturbances in terms of a two-dimensional problem.
They began by considering the complete system of linearized partial differential equations
for three-dimensional disturbances and their asymptotic properties for large Reynolds
numbers. By a consistent approximation scheme based on an order-of-magnitude
analysis of all the terms involved, they were able to derive a set of simplified equations
which, they suggested, would be adequate in a first approximation. An important feature
of the simplified system is the absence of the dissipation term from the energy equation,
and it is mainly because of this simplification that Dunn and Lin were then able to
perform a Squire-type transformation on the equations.' For a three-dimensional dis-
turbance of the form

q'(x, 9,2t = q(y) exp {i(ax + Bz — act)}, 2.1)

where o, 8 are wave numbers and c¢ is the complex wave speed, a rotation of the coordi-
nate system in the (z, 2) plane through an angle ¢ = tan™ (8/a) leads to an uncoupling
of the z-momentum equation and a simultaneous elimination of the z-dependence in the
other equations. The resulting system of equations for the amplitude functions of the
disturbances are generally known as the Dunn-Lin equations, and in non-dimensional
form they are given by

p{ia(U - C)f + U,a¢} = R f’/ - M2 LS
1
plic®(U — )¢} = L ag’” — =m0,
R® ™M 2.2)
pliaU — )8 + T'ad) = L o7 + =L (iU — o)},

o&°

WU —or + p'd + o(if +¢') =0, 1r=r;+%,

1Tt must be stressed, however, that this result is not strictly analogous to Squire’s theorem [15]
for incompressible fluids. The correspondence is purely formal since the two-dimensional Dunn-Lin
equations do not represent a ‘“proper’’ two-dimensional disturbance.
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where (y), m(y), 0(y), f(y), and ¢(y) are the amplitude functions for the perturbations
in density, pressure, temperature, and velocities in the r and y directions, respectively;
the quantities U(y), p(y), T(y), and u(y) are the distributions of velocity, density,
temperature, and viscosity in the basic flow and can be regarded as known. The ratio of
specific heats and the Prandtl number are denoted by r and ¢ respectively. Once the
solution to the equivalent two-dimensional problem has been obtained, we can recover
the solution to the three-dimensional problem by replacing « by @ = (¢ + 8°)'/, the
Reynolds number R by R, and the Mach number M by 3, where

R = (U*s/v*) cosy and I = U*(n,®*T,*)™"* cos ¢. (2.3)

In these equations, 6 is the local boundary layer thickness, ®* is the gas constant, and
U* v * T.* 7, are the local free-stream values of the basic velocity, kinematic viscosity,
temperature, and the ratio of specific heats, respectively.

Six boundary conditions must be specified in conjunction with Eqs. (2.2) and they
are given by

é,f,0 boundedas y—
$(0) = f(0) =0,  a8'(0) + b6(0) = 0, (2.4)

where the constants ¢ and b are determined by the thermal properties of the boundary.
In particular, the special cases @ = 0 and b = 0 correspond to the cases of isothermal
and insulated walls, respectively.

To facilitate the analysis of Egs. (2.2), we shall first introduce a Langer variable

w0 = [ (Co0s) ) @5

Y ve

where, as usual, we shall suppose that the basic velocity profile U is monotone increasing
and U,/ = U'(y.) # 0, y. being a simple zero of U — ¢. A transformation such as (2.5)
brings into coincidence the Stokes and anti-Stokes lines associated with the inner and
outer expansions and simplifies the subsequent application of certain matching condi-
tions. It should also be noted that this Langer variable is identical to the one used by
Dunn [1] except that it has been normalized so that in a neighborhood of y = y. , we have

1/1 Uc// c/
2y) =y — y. + 5 <§ U~ :T)(y -y 4 (2.6)

Furthermore, we shall make a preliminary transformation of the dependent variables
of the following form:

@) = 2(), [@ =F@), 6@ = 6),

*@) = () and p@) = Rn). @7
If we let
D =d/dy and £ = €D’ + vD) — n, 2.8)
then, on setting ¢ = 1, Egs. (2.2) become
LF = —ig,® + g¢,1I, £b = ¢,DII, £6 = —g,® — g0, 29

genR + p'® + p(tF + #'D®) = 0, 1 = R/p+ 6/T,
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where
v(n) = 2"/,
. U’ . U’ . 1
90 = G 6 = g 60 = papp
(2.10)
. (3 TI - 1 1 . Uo’
ga(n) = ¢ 5_7’? , o gsn) =7 T go(n) = 2':vn’2,

e = (@RU. /v) 2.

Hence, corresponding to the case of neutral stability for which c is real, we have ph ¢ =
—x/6. In Egs. (2.9) and (2.10), primes denote differentiation with respect to y. The
boundary conditions become

®(n), F(n), and ©O(n) bounded as 5 — =,
®(n0) = F(no) = 0, an’(0)DO(no) + bO(n0) = 0, (2.11)
where 7, = 7(0). Egs. (2.9) will then be the starting point of the present analysis

3. The general structure of the uniform approximations. In discussing the solutions
of the Dunn-Lin equations, it has been customary to consider, for each of the five
disturbance amplitude functions, six linearly independent solutions, two of which are of
the inviscid type and four are of the viscous type. In the present work, however, we
wish to take into account explicitly certain basic symmetries of the Dunn-Lin equations
suggested by a preliminary study of their inner expansions. Specifically, it can be shown
that these inner expansions can be represented to all orders in terms of the generalized
Airy functions.? This leads us to consider ten exact solutions of Eqgs. (2.9) which exhibit
precisely the same symmetries in their asymptotic properties as the generalized Airy
functions. This also suggests that the uniform approximations to these solutions can be
derived asymptotically in terms of these special functions.

In order to simplify the notation in the subsequent discussion, we shall treat the
problem of deriving uniform approximations in terms of 6(n) alone. Once the approxi-
mations to ©(n) have been obtained, the corresponding approximations to ®(3), F(),
R(n) and II(y) can easily be derived. The choice of () is to some extent arbitrary
since, in principle, the present theory could be carried out in terms of any of the five
disturbance functions. Nevertheless, from a study of the structure of the uniform expan-
sions, O(n) seems to emerge as the most natural variable.

Consider then the ten solutions corresponding to ©(n) which will be denoted by
Ow(n), 85.:(n), Ou.:(n) and B :(n) (k = 1, 2, 3). We now require that 6,(n) be well-
balanced, 65 () be balanced in 7', , and that both 0, , and O, , be recessive in S, ,
where T, and S; are sectors in the complex plane bounded by Stokes and anti-Stokes
lines respectively (see Fig. 1). The asymptotic properties of ©y(n) and 65 :(y) then
uniquely define these solutions to within a multiplicative factor and modulo a multiple
of B4 (n) in the case of 05 ,(n). The solutions 6, ,(n) and 67 .(y) are, however, indis-
tinguishable by their asymptotic properties alone. Additional conditions are needed for
their unique characterization, and these will be given in the form of certain matching
conditions in conjunction with our discussion of their outer expansions in Sec. 4. The

2 For a complete discussion of the definitions and properties of the generalized Airy functions, see [11].
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Fic. 1. The anti-Stokes lines (left) and the Stokes lines (right) in the 5-plane.

presence of two solutions of dominant-recessive type in any one sector S, is perhaps a
distinctive feature of the Dunn-Lin equations as well as other two-dimensional stability
equations of compressible boundary layer theory. This fact also leads to certain important
differences between the asymptotic theory of the Dunn-Lin equations and that of the
Orr-Sommerfeld equation.

The general structure of the uniform approximations to these solutions can now be
inferred directly from their corresponding inner expansions. For our purpose the explicit
forms of these inner expansions will not be needed. We need only note that, to the first
three orders, the inner expansions of 65 () can be expressed in terms of the generalized
Airy functions B,(f; p, 1) (where { = 5/¢) for certain integral values of p and, by using
the recursion formula satisfied by these functions, it is then sufficient to let p take on the
values 1, 0, —1 (say). The structure of the inner expansions then suggests the uniform
approximations of balanced type must be of the form

©5.x(n) = G(n, &) — {G(n, &Bu($; 1, 1) + e-I<B("7) €)B.(; 0, 1)
+ eC(n, OBu(; =1, 1)} + 0("),  (3.1)

where @, ®, C, and G have asymptotic power series expansions of the form

aln 9 = 3 e, 3.2)

and where the coefficients G.(n) are analytic at n = 0.® For convenience, we shall now
omit the subscripts on @o(1), Bo(n), Co(n), and Go(n), and in a “‘first approximation’ to
05 .:(1), we have

05.:(n) = G(n) — {@(MB:(; 1, 1) + ¢ '®(n)B.(; 0, D} (33)

The corresponding first approximation to the derivative of 85 .(») is given by

3 To be more precise, the coefficient G(», ¢) must be expanded in terms of the asymptotic sequence
floge 1, Slog2e, eloge ¢, ---}. Hence G(n, €) = Goi(n) log ¢ + Goi(n) + 0(e log?, & log ¢, &) (say).
For the present purpose, however, it is not necessary to make such an explicit decomposition (cf. Eq.
(5.20)).
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05.'(n) = §'(n) — €(n) — {&'(B.(; 1, 1)
+ ¢7'[@(n) + B'(n) + 1€IB.(; 0, 1) + e *®()Bi(s; =1, ). (3.4)

Hence the problem of obtaining uniform approximations to the solutions of balanced
type and their first derivatives can be reduced to the determination of the four coeffi-
cients @(n), ®(n), €(n), and G(n). '

The structure of the expansions of dominant-recessive type can be inferred either
from the inner expansions of Oy (1) and 67 (1), or directly from Eq. (3.1) by using
the connection formula satisfied by the generalized Airy functions (cf. [11]). Thus,
corresponding to Eq. (3.1), we have

Ou.i(n) = an(m)A:(&; 1) + é_le(ﬂ)Ak(C 0) + ecu(n)Ai(s; —1), (3.5)
Or.i(n) = ar(nAi(§; 1) + € dr(n)Ai(§; 0) + ecr(n)Au(s; —1), (3.6)

where the coefficients are the leading terms of expansions of the form given by (3.2).
In a first approximation, terms involving ¢, (n) and cy(n) must, of course, be omitted
from Egs. (3.5) and (3.6), respectively. They are needed, however, in the first approxi-
mations to O, . (1) and 67 ,'(n). It is perhaps of some interest to note that with our
subsequent normalization of O, :(n) and Oz (), the leading terms in their inner
expansions will correspond, respectively, to certain viscous approximations of the
momentum and thermal groups in the older heuristic theories (cf. [14]). This also explains
our choice of subscripts for 04 () and 6,(n).

The structures of the uniform approximations for the other dependent variables are
essentially identical to those of ©(n) except that in the cases of ®(») and II(y), the factor
¢ ' in terms involving A4,(¢; 0) and B,(¢; 0, 1) must be replaced by €.

It would have been possible, of course, to express the expansions of balanced and
dominant-recessive types respectively in terms of B.(¢; p, 1) and A,(¢; p) with p = 2,
1, 0, say, rather than 1, 0, — 1. Our present choice of p = 1, 0, —1, however, seems to be
the most convenient one for ©(n) partly because of their compatibility with certain
outer expansions to be defined in Sec. 4, and partly because they lead directly to a
simple derivation of the coefficients @(7), ax(n), and ar(n). For these reasons, 0(n) also
appears to be the most natural dependent variable associated with the problem.

The ten solutions which we have defined for 6(n) cannot, of course, be linearly
independent, but must satisfy four exact connection formulae. Although these connection
formulae are not essential to the development of the present theory, as has been shown
by Reid [12, 13] in his discussion of the Orr-Sommerfeld equation, nevertheless their
use can lead to a more systematic derivation of the coefficients in the expansions of
balanced type. Thus, for example, by using the connection formula

B,($; p, 1) — Bs(§; p, 1) = 2714,(; p), (3.7)
we obtain to first order

93,2(")) — 05,3(n) = suOu.(n) + $267..(n), (3.8)

where s, and s; are two appropriately chosen constants which depend on the normali-
zations of Oz :(n), Oy .x(n), and O7 :(n). On substituting the expansions (3.1), (3.5),
and (3.6) into Eq. (3.8), it then follows that the coefficients in the expansions of balanced
and dominant-recessive types must satisfy relations of the form

Q(n) = suau(n) + srar(n). (3.9)
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Hence the coefficients in the expansions of balanced type can be derived from the corre-
sponding coefficients in the expansions of dominant-recessive type.

4. The outer expansions. In order to achieve further simplifications in the deriva-
tion of the slowly varying coefficients in (3.1), (3.5), and (3.6), it will be necessary to
match these approiimations in suitably restricted domains of the p-plane to their
corresponding outer expansions. For this purpose, we need to construct ten outer expan-
sions for ©(n) which correspond, in their asymptotic properties, to the ten solutions
defined in Sec. 3. The methods of deriving these outer expansions are essentially the
same as those used in the older heuristic theories to obtain approximations of inviscid
and viscous types which are valid away from the turning point. But the results presented
here are new in so far as they have been derived for the case where the Prandtl number
is one. The role these expansions play in the present theory is also substantially different
from that in the older theories.

The outer expansions of well-balanced and balanced types. We may obtain outer
expansions of well-balanced and balanced types by first considering, for each dependent
variable @ (say), an expansion of the form

@

Q(n, ¢ = g Q" (n). 4.1)

On substituting (4.1) into Egs. (2.9), we find that to the lowest order @ (n) satisfies
a system of equations which is identical to the so-called inviscid equations obtained
from (2.9) by letting |¢] — 0. These equations can be further uncoupled and rewritten
as a single second-order equation in terms of () or I‘”(5). In terms of & (),
we have

(2D* + p(n)D + ¢()]1®” (1) = 0, 4.2)

where p(n) and ¢(n) have Taylor series expansions of the form

p(n) = kz:}mn", q(n) = g an”. (4.3)

Two solutions of Eq. (4.2) can be obtained by the method of Frobenius and they can
be written as

'i’rv(m(ﬂ) = 1¢w(n), (44)
5,0) = o) + (570 — 5 + 228, ) log n, 5

where @ (n) and @ (n) are power series in » with the leading terms normalized to unity
for convenience. Moreover, $,‘” (y) is made definite by requiring that ¢z(») contains
no multiple of &,,‘” (), i.e. the coefficient of the linear term in $5(7) is zero. A simple
calculation then gives

By (n) = i 17 b+§7n+mﬂ} (4.6)

)Ow“”(n) log 7, @7

éB(m(’?) = 68(77) + (5')’0
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where

) = 125 {1+ ow}- @8
Uco \n '
The normalizations of 8, " () and 8;“(y) are completely fixed in terms of those
of ¥ and &5 (»).
Since 8w ‘” (n) is regular at n = 0, it is clear that it provides a uniform approximation
to the well-balanced solution 6 (n) defined in Sec. 3. But on the other hand, 8, (5)
has a logorithmic branch point at n = 0, and hence it cannot be uniformly valid in a full
neighborhood of the turning point at which the Dunn-Lin equations are regular. Follow-
ing the suggestion of Reid [11], we may, however, restrict ph 5 such that —3»/2 <
phn < w/2 and define three outer expansions 8 .(n) (k = 1, 2, 3) according to the
following scheme:

Bs.4(n) = 8,7(n) (1 € TW. (4.9)

Thus the 65 ,(n) are balanced in T, and provide the required outer expansions.

The outer expansions of dominant-recessive type. In order to derive the outer expan-
sions of dominant-recessive type, it has been customary to use expansions in inverse
power of A = ¢ *. By a preliminary calculation which is essentially a direct application
of the well-known WKB method, we find that 8(») must be of the form

8(n, 9 = € exp (=] 3 (087 (), (4.10)

where C is an overall normalization constant. On substituting (4.10) and similar expan-
sions for the other dependent variables into Eqs. (2.9), we obtain a sequence of systems
of differential equations from which the Poincaré part of these expansions can be deter-
mined to all orders. The lowest order system of equations is homogeneous and can be
written as a single second-order differential equation in terms of 8‘“(4) of the form

MBC =0, 9 =7 D+ r()D +  s(n) (41D
and 7(n) and s(n) have Taylor series expansions of the form

M) =24+ Db, stn) = = 4+ 3 s 4.12)
=1 16 =1

It is interesting to note here that the structure of these outer expansions is quite similar
to those encountered in the study of the stability of spiral flow between rotating cylinders
(cf. [3]) and in both cases their structure depends crucially on the roots of the indicial
equation associated with a certain second-order equation which is singular at n = 0.
For Eq. (4.11), the exponents are —3/4 and —1/4, and hence we obtain two solutions
of the form

8y (1) = 0 *Gu(n) and 8;(n) = 17*82(n), (4.13)

where 6, (n) and 8,(») are power series in 5 with the leading terms normalized to <T,’/U.’
for convenience, i.e.

T

’

~

O () =1

T L + 060, B = i (14 + 0G)). (414

4
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The constants ay and ar are given by

_1 ULy - - 2E)

an =35 (770 + T + 2 . 2Tc , ar = =5 \v — 3T.) (4.15)
The system of equations for the second-order terms in these outer expansions is not

homogeneous but it can also be uncoupled and rewritten as a second-order equation

involving only 8 (5) and 8 () of the form
moeY = 4(6'). (4.16)

If we let
I = 9(8x4), 9r = 9(8:) (4.17)

then we can derive two particular solutions 8, and 8, of Eq. (4.16), corresponding
to 8, (n) and 6;”(n). The exact forms of the inhomogeneous terms 9, and d, are
known, but they are somewhat lengthy and hence will not be given here. Moreover,
6, (1) will not be needed for the purpose of matching and it suffices therefore to
note that

5 T o 9 1T 3 . T." ;
gr = i35y T 7“{1 - (5 Yo~ BT A2 E?‘)ﬂ + 0(?7")}' (4.18)

By using the method of variation of parameters, it is found that

5, (T a5 (5 5 ) }
(n) = 7 {48+ Theid 16aM71+
-+ hMéM(O)(") + hrér(m(‘ﬂ): (4~19)

where h,, and k, arc arbitrary constants which can be fixed in various ways to be dis-
cussed in the following section.

Combining these results, we then have four WKB approximations for 8(n) of the
form

Bu*(n) = 3m %" exp (£3\0""?) g (N8, (), (4.20)
Or*(n) = 3n7 %" exp (£3M"%) kZ; (£N)67"(n), (4.21)

where the overall normalizations have been fixed in order to facilitate the subsequent
matching. We can now define six outer cxpansions, 8, (1) and 6, .(n) (k =1,2,3),
in terms of ©,*(n) and ©,*(n), corresponding to the six solutions 0, () and O .(n)
(k = 1,2, 3). For this purpose, we shall regard 8,,*(n) and 8,*(5) to be defined for all
values of 4 in the range —37/2 < phn < x/2. The outer expansions 8, ,(n) (k = 1,2, 3)
which are recessive in S, can then be defined by the following scheme:

éM.l(ﬂ) = éM—("I) ("IE T,V Ta),
6M.z(']) = iéM+(n) ("7E T3 ) Tl)v (422)
éM,3(77) = —iénl+(’7) (776 Tz);

= —8u (M (ET).
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The remaining three outer expansions 6, ,(n) (k = 1, 2, 3) can be defined in a similar
manner in terms of 8,%(y). Moreover, the dominant-recessive type solutions 6, .(5)
and O7 .(n) can now be uniquely defined if we require that their outer expansions be
given by 0, , and 8, .(n), respectively.

5. Determination of the coefficients in the uniform approximations. In order to
derive the slowly varying coefficients in the uniform approximations, we may consider,
of course, the direct method of substituting these approximations into the Dunn-Lin
equations. Depending on the type of approximations involved, we would then obtain
three or four sets of coupled differential equations for the coefficients, all but one of which
are of rather complicated form. Alternatively, we observe that these approximations,
being uniform, are expected to be reducible to their corresponding outer expansions
within certain common domains of validity. This then suggests that the procedure for
determining the required coefficients can be partially simplified by matching the uniform
approximations to their outer expansions defined in Sec. 4. It should be stressed, however,
that matching can yield some but not all of the coefficients needed. Differential equations
satisfied by the coefficients must be used to derive G (), ax(n) and ar(y) in (3.1), (3.5),
and (3.6). Nevertheless, this approach has the distinct advantage of enabling us to
normalize the uniform approximations in a natural manner. It also brings out explicitly
the relations between the results of the present and the older theories. In view of the
relation (3.9), it is perhaps more convenient to consider first the approximations of
dominant-recessive type.

The dominani-recessive approrimations of M-type. On substituting (3.5) and the
corresponding expansions of the other dependent variables into Egs. (2.9), we obtain
a system of homogeneous differential equations for the coefficients, among which the
equations involving the coefficients of A,(¢; 1) form a closed system that can immediately
be identified as the “‘inviscid equations’ discussed in Sec. 4. Hence we must have

ay(n) = axn(0) By (n), (6.1)

where 8y ‘”(n) is simply the well-known regular inviscid solution of the Dunn-Lin
equations given by (4.6).

We may, of course, derive by () and cy(n) in a similar way. For example, it is found
that by (n) must be a multiple of the regular solution of the following homogeneous
equation:

{nD* + u(n)D + v(n)}¥ =

where
3 _1 1T 3 Z’L)
uln) = 2 + (5’}' 2 Ty’ + 2vy’ T4/
1 _-'11) 1 [n_':: 5 s
v(n) = 2 ( T‘ﬂ + 2 ﬂl2 + 2 Y (5.2)

51" 3 v _TL> IL(l'_ _ L)]
- 7(2 Tﬂ/ 2 Vﬂ, + T/n/ + T"/ Tﬂl W],

while ¢, () must satisfy a somewhat lengthy inhomogeneous equation in which the
inhomogeneous term involves a,(n) and b,(y). Thus, in principle, the coefficients
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ax(n), bu(n), and cx(n) can be completely determined (up to a normalization factor in
the cases of a, () and by (n)) by certain differential equations. The necessity of solving
the latter two equations can, however, be avoided if we now match approximations of
the form (3.5) to the corresponding outer expansions in their respective domains of
validity. Hence a re-expansion of 0, ,(n) for nin (I — T,) N (J¢] < |7| X 1) gives

eM,l(ﬂ) ~ _%W—I/Ze—3/4 exp (_%6-3/2?73/2)

X S a™ 4buln) — &7 2 7 bun) + 17 au(n) + 1" eu(n) | + 0 (5.3)
48

Combining the results of (4.20) and (4.22), we obtain an outer expansion of the form
3% exp (— 367%™ (8, () + 0(7)}, (54)

where
81" (n) = 1 *Gu(n). (5.5)

If we now require that (5.3) and (5.4) be identical, thereby fixing the normalization of
O .1(n) in terms of its outer expansion, and require that a(n), bax(n), and cu(n) be
analytic at » = 0, then we must have

ay(0) = =1, bu(n) =0, cu(n) = —ﬂ_l{aM(?I) + an(n)}. (5.6)

These results, incidentally, also clearly show that the use of differential equations at
some point of the present theory is essential. Otherwise the coefficient ¢, () cannot be
determined by matching alone.

The dominant-recessive approximations of T-type. The coefficients in the uniform
expansions of Oy ;(n) can now be determined in a similar manner. Clearly, a;(n), br(n),
and c,(n) satisfy the same equations as a,(n), bx(n), and cx(n). We shall, however,
make no essential use of this fact for reasons we have already discussed, except to note
that a,(n) is given by

ar(n) = az(0) 8% (n), (5.7

where a,(0) is the normalization constant to be determined later. Again, by re-expanding
O7..(n) for values of nin (I — T,) N (J¢| < |9| X 1), we obtain

—-1/2 —-3/4 —3/2 3/2
€ 7’%)

O7,.(n) ~ 37 exp (—3e
X {n'” *br(n) — em[fg 7" *br(n) + 0" ar(n) + 1" 4cT(n):l + 0(8)}- (5.8)

On the other hand, the outer expansion of 0, () derived in Sec. 4 is of the form

BV exp (—3 ) (B,0() — €780 + 0@, (69)
where
8% () = v Fr(n), (5.10)
8900 = 1 2 B (B s = B) o} B ) 4 1B ) 61D
U. 48 12 16

such that oy and a, are constants given by (4.15). By requiring that (5.8) and (5.9) be
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identical we can immediately deduce that

be(n) = 87(n),  cz(n) = n‘z{n”‘ér“)(n) — nar(n) — fé br(n)}‘ (5.12)

The behavior of ¢z(n) as 7 — 0 is then given by

ealn) = —i o7 (17 sl — tr) = hug o+ 650] = 77 hebsla) + 0}, (5.13)

and our requirement that c;(n) be analytic at = 0 then shows that the coefficients of
7" and »7""* must both vanish identically. Hence we have

hr = 0, hy — ar(o) = TQG'(O‘M - ar)- (5-14)

This regularity condition, however, does not fix h; and a,(0) separately. One way to fix
these constants would be to require that, in a first approximation, the solutions 0 .(»)
contain no multiple of 6, :(n), which then implies that

ar(0) = 0, hy = Flow — ar). (5.15)

This particular normalization of 07 ,(5) will serve the purpose of simplifying somewhat
the constants sy and sr in equation (3.9). But on the other hand, it might be more
desirable for some purposes to fix the normalization of 8, ,(») by considering the corre-
sponding outer expansions of the form (4.22). In that case, the customary procedure
is to require that 6, (y) contains no multiple of the solutions of the homogeneous
equation (4.11). We must then let h, = hy = 0 and arz(0) = —(5/16)(ay — ar).

The approximations of well-balanced and balanced types. For the solution of well-
balanced type, it is clear that a first-order uniform approximation to 0y (5) is provided
by the first term of its outer expansion. Thus we simply have

ew(ﬂ) = éw(m(ﬂ) + 0(63), (5~16)

where 8, ” () is the regular inviscid solution given by Eq. (4.6).

The coefficients @(n), ®(n), and €(n) in the approximations of balanced type can,
of course, be determined by certain differential equations which are identical to those
satisfied by the corresponding coefficients in the approximations of dominant-recessive
type. Moreover, it can easily be verified that the well-balanced part G(1) must be the
solution of a certain inhomogeneous version of the inviscid equations. Alternatively,
these coefficients can be derived more systematically by using the relations of the form
(3.9). For this purpose, it is necessary to first determine the constants s, and s, in (3.9)
by matching. We shall also suppose that the normalization of 0 .(y) is fixed by Eq.
(5.15).

Consider then the uniform expansion of 65 ;(1) (say) given by Eq. (3.1). On substi-
tuting relations of the form (3.9) and re-expanding for 5 in T5 N (J¢] < |9] X 1), we
obtain

01‘(’7)
n

05,3(1) ~ {31' +G(n) + sullog e — v + 21rﬂ§w‘°’(n)} — 540w O(n) log n, (5.17)

where v is Euler's constant. But on the other hand, from (4.7) and (4.9), the outer
expansion of 05 ;5(n) is given by
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!’ !
85,5 (n) = Oz(n) + (570 - g +2 :L)éw“”(n) log 7. (5.18)

Again if we require that Eqgs. (5.17) and (5.18) be identical, thereby fixing the normali-
zation of O3 ,(n) in terms of its outer expansion, we must have

’ ’
S = —<5‘Yo - g:_c + 2:%) ) sp =1 (5.19)

so that the well-balanced part G(n) of 65, 5(n) is given by

51'("1)
n

_ T, ! .

G(n) = Bs(n) — + (570 -7 + 2 E—)[Iog e — v + 2mi]6,(n). (5.20)
It can then be easily verified that G(») is regular at » = 0. On substituting Eqgs. (5.19)
into relations of the form (3.9), we have

Q(n) = (570 - % + 2 %)éw‘“(n),
®(n) = 8r(n), (5.21)
C(n) = —(570 - g; + 2 :i’)cM(n) + cz(n),

where ¢y () and c;(n) are given by Egs. (5.6) and (5.12).

Although some of the coefficients in the uniform expansions for 6(4) have, for reasons
of simplicity, been obtained by matching, it can be shown, by a straight-forward but
somewhat lengthy calculation, that they do, in fact, satisfy the differential equations
referred to in the discussion at the beginning of this section. Furthermore, the corre-
sponding coefficients in the expansions for ®(3), F(»), R(n), and II(y) can be derived
from the same set of equations and they are quoted in the appendix.

6. Discussion. The theory developed in this paper provides uniform approximations
to the solutions of the Dunn-Lin equations, which are valid in a full neighborhood of the
turning point » = 0. Thus far, only ‘‘first approximations” have been obtained, but
it is clear that by using the present algorithm, higher-order approximations can be
systematically derived if required. In that case, the full generality of the generalized
Airy functions would be needed.

To the first order, these approximations are strikingly simple, despite the relative
complexity of the governing equations, and they can readily be expressed in terms of
quantities many of which are well-known from the older heuristic theories. The slowly
varying coefficients involve only the regular inviscid solution, the well-balanced part of
the singular inviscid solution, and the regularized forms of the first two terms of the
Poincaré series in the WKB-type outer expansions. On the other hand, the rapidly
varying parts consist of only the generalized Airy functions. The inner and outer expan-
sions of the Dunn-Lin equations can, of course, be obtained by re-expansion of these
uniform approximations.

No claim of generality has been made throughout the present work. It is expected,
however, that the techniques developed here can be easily adapted to deal with the more
complicated stability equations of compressible boundary layers. It should be noted,
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however, that the present theory depends crucially on the fact that the inner expansions
of Egs. (2.9) can be expressed in terms of the generalized Airy functions. For the case
where the Prandtl number differs from unity, a more general class of functions will
be needed.

The derivation of the characteristic equation and the detailed calculation of the curves
of neutral stability have not been considered in the present paper mainly because the
numerical work involved will itself be a major undertaking. Moreover, such a task is
more appropriate as a sequel to the corresponding calculation in the incompressible case.

Appendix. The uniform approximations to ®, F, R and II. The slowly varying
coefficients in the uniform approximations to 6(n) have been derived in Sec. 5 by the use
of the inviscid equations and the method of matching. In this appendix, we shall give
the corresponding coefficients in the uniform approximations to ®(y), F(n), R(») and
II(5). For this purpose, it is convenient to augment the notation of Sec. 3 by defining

() ($u(n))]
0.: Bi(t;1, 1) Au(e; 1) 6..(n)
Q.= |F.|l, u=|B((;0,1) |, v=[4(;00 |, w=/|f.n)],
R, Bi(¢; —1,1) A —1) ru(n)
IT ;. (m(n) ) (A1)
G (0.0 €o0 .-
e 0, €'0, €b_,
e=|€, L=\f, €'%fo ¢l
e r, €. e,
L€*) i, €ro  er_y)

It can then be verifi 1 that the structure of the uniform approximations of dominant-
recessive types can be defined by

Qu.e = Lyv + Ofe), qr. = Lyv 4 O(e), (A2)
and the uniform approximations of balanced type must then satisfy
9z, = Lgu + w(n) + 0(), (A3)

where Ly = syLjy + srLy , and where s, and s; are the constants given by (5.19).
Clearly, in the present notation, the various coefficients in the uniform approximation
to ©(n) are given by

O ,1(n) = an(n), 01r.0(n) = by(n) =0, Oar,—2(n) = cx(n),
bz..(n) = az(n) =0,  8r.0(n) = be(n),  Or,1(n) = cx(m), (A4)

05.1(n) = @(n),  Op.o(n) = ®B(n), Oz._i(n) = C(n),  Ou(n) = G(n).

Moreover, in giving the corresponding results for ®(n), F(n), B(n), and II(»), we shall
suppose that the regular inviscid solutions &, (n), F.,*” (n), R, () and 1I,” (4) have
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been determined by solving the inviscid equations and their normalizations fixed in
terms of that of &, (n) (cf. Sec. 4). The coefficients in the uniform approximations
to ®(n), F(n), R(n), and II(n), except for the well-balanced parts of the balanced type
approximations, can then be determined algebraically and directly without further
matching from the set of equations which they satisfy.

The dominant-recessive approximations of M-type.

¢M.l = _éw(O)’
1
b0 = “E [20M.l/ T+ ¥O0u.1 + 2960s, - + (1 + ’Y"I)oM.-l' + gz"T’"M.o]; (A5)
éwm)
Gaoy =
n
fM.l = _FW(O)y fM,O = Oy (A6)
fu.or = 1[1_707"7 Tar,-1 + 0'bu.0 + %¢M.—l + n,¢M,—l’]'
™M1 = wa), Ty, = 0, ™™,-1 = PI:""M,—l - OLT—‘I‘] (A7)
1 nw(O)
= —11,7, Tr,0 = _3¢M.l — a1’y T, -1 = " : (A8)
The dominant-recessive approximations of T-type.
1
¢r, =0, ¢ro0 = —— (070" + ¥0r.o' + 2907, + (1 + 777)01'.-1]’
1
¢r,—1 = —a [201'.0, + ‘Yor.o]-
. T
fT,l = 0; fr.o = ’l«% [201.0' + v0r.0 — T_7 01‘.0] ’
K (A10)
fT.—x = i[%‘z Tp,-1 + 77'¢1'.o + %¢T.—l + 77’¢T.—1,:|
rp, =0, Tr,o = —% 0r.0, Tr,-1 = —% Or. -1 . (A11)
Tr, = 0, Tr.o = O, Ty, -1 = 0. (A12)

The wuniform approrimations of balanced type. The various -coefficients of
Bi(¢; p, 1) (p = 1, 0, —1) in the approximations of balanced type can be obtained
as linear combinations of the corresponding coefficients in the approximations of domi-
nant-recessive types of using Eq. (A3) and hence their detailed forms will be omitted
for brevity.

The well-balanced parts ¢., (1), 8. (n), f.(n), and r,(n) of @5, Fp i, and I , cannot
however, be readily expressed algebraically in terms of the well-balanced part 6, of
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O5 .. .* They can be obtained, however, either by solving a certain inhomogeneous version
of the inviscid equations which they satisfy or, more simply, by the application of the
matching method discussed in Sec. 5, in which case, we have

T,

T +

8 = B + (570 — 2+ 27 )llog  — v + 20i)8., (A1)

T

o) = o) = 290 4 (57, ~ T4 4 2 Nog e — v 2000, (A1

ru(n) = 75(n) — ’%’(") + (570 - T + 2Z )[log e — v+ 2mR,,  (Al5)

mo(n) = #5(n) + (570 — ;—7- +2 :L)[lOg e — v + 2m]I,°, (A16)

c

where &4 (n), f5(n), 75(n), and #(n) are the well-balanced parts of the singular inviscid
solutions &5V (1), F 5 (n), R (n), and 11, (), respectively. It can easily be verified
that ¢..(n), f.(n), r.(n), and =, (1) are regular at » = 0, and that they satisfy the required
set of differential equations.
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