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Abstract. Surface waves of a homogeneous liquid and internal waves of a stratified
liquid in basins of variable depth are considered. Inequalities involving the frequencies
of oscillation are obtained when a container with one size or geometry is compared with
another with a different size or geometry, when waves with one wavelength are compared
with waves with another wavelength, or when one stratification is compared with
another. Since exact solutions for gravity waves in basins of variable depth are so rare,
one hopes the comparison theorems presented herein will be useful.

1. Introduction. The number of explicit analytical solutions for water waves in
channels of variable depth is extremely small. The few solutions in Lamb's book [1]
(pp. 442-450) remain to this day the only ones in existence. The situation with internal
waves is quite similar; the only explicit analytical solutions extant are for linearly or
exponentially stratified fluid in ellipsoids and elliptic channels, when the Boussinesq
approximation is used. For this reason it is desirable to have some comparison theorems
that enable one to estimate the frequency of oscillation reliably and quickly, for all
modes of wave motion.

In this paper a few such theorems will be given, when one size or geometry is compared
with another, one wavelength with another, or one stratification with another. Some
of the theorems are fairly obvious, but in combination with the less obvious ones give a
powerful means of locating the range in which the frequency must lie.

2. System governing surface waves. Consider first surface waves in a homogeneous
liquid contained in a basin of arbitrary shape. The fluid can be treated as incompressible,
and we can neglect the effect of viscosity for the main body of the fluid. We shall assume
the flow to be irrotational, so that a velocity potential <f> exists, the gradient of which
gives the velocity vector. In Cartesian coordinates x, y, and z, with y measured in the
direction of the vertical, the equation satisfied by <f> is, as is well known,

<t>xx + 4>w + <t>z* = 0, (2.1)

where the subscripts indicate partial differentiation. The condition at any stationary
solid boundary is

4>» = 0, (2.2)
* Received July 21, 1974. This work has been sponsored jointly by the National Science Foundation

and the Office of Naval Research.
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where n is measured in the direction of the normal to the boundary.
At the free surface there are a kinematic condition and a dynamic condition of

constant pressure, which can be combined into ([1], p. 364)

<t>n + 94>u = 0. (2.3)

We shall assume <£ to have the time factor exp { — id). Then (2.3) can be written as

a-2<)> = y<t>v . (2.4)

3. Comparison theorems for surface waves. The most obvious theorem presents
itself when we compare one container with another one similar in shape but different
in size. Let the first basin be B and the second one be B', and let all linear dimensions
of B' (including the depth of the liquid in it) be m times that of B. If <j>(x, y, z) is the
solution for wave motion of any mode in B, then 4>(m~lx, m~1y, m~1z) is the solution for
wave motion of the same mode in B', provided

a' = ma'2, (3.1)

a being the frequency for B and a' the frequency for B'. Thus we have
Theorem 1. If the size and liquid depth in a basin is multiplied by a factor m, the

frequency of wave motion for any given mode is multiplied by a factor (1 /m)1/2.
This result is fairly obvious, for on inspection of (2.1) to (2.4), we see that for any

given geometry, a depends only on g and the linear dimension L, so that <r2L/g must be
constant. Indeed, we see also that a2 varies directly with g for any given mode. But in
conjunction with another, less obvious theorem it is very useful.

Moiseev [2] has given the following theorem:
Theorem 2. The frequency of water waves for any given mode in a basin of

variable depth is always greater than that in another basin provided the free surface
is exactly the same for both basins, the water-occupied domain in the former basin
contains that in the latter basin, and no infinite velocity occurs in either basin.

We shall, for the sake of completeness, give the essential arguments of the proof.
Let the first basin be denoted by B' and its water-occupied domain be denoted by D',
and the second basin be denoted by B and its water-occupied domain be denoted by D.
It can be shown that an interior angle less than t on the boundary of B will in general
give rise to a distributed singularity outside of B, but that that singularity distribution
does not affect the conclusion. If there is an interior angle less than tt on the boundary
of B', the result also remains, since the boundary of B' can be approached by a succession
of smooth curves. Therefore we need only consider smooth boundaries for B and B' here.
Then there is no singularity of <f> on the boundary of B or of the continuation of <p infinitely
close to it, since the velocity field along that boundary is finite and free from singularities,
and we can take B' sufficiently close to B so that D' — D is free from singularities. Since
the solution 4>' for B' differs very little from the solution <j> for B and for the same mode,
the projection of the gradient of <f>' on the gradient of 4> must be everywhere positive
in D' — D, i.e.,

P = > 0, (3.2)

and, furthermore, over the free surface S
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Q = [ H>' dS > 0. (3.3)
J s

Now <t>' must also satisfy (2.1), (2.2), and (2.4). We shall denote the three equations
satisfied by <f>' by (2.1'), (2.2'), and (2.4'), without explicitly displaying them. Mul-
tiplying (2.1') by 0, integrating over D', and using (2.2') and (2.4'), we have

\'Q = f P dV, (3.4)
Jd•

where X' = a'2/g. Similarly, multiplying (2.1) by <j>' and integrating over D, we have

\Q = f PdV, (3.5)
Jd

where X = <t2/V/. The difference between (3.4) and (3.5) is

(X' - \)Q = f P dV. (3.6)
J D'-D

Since P and Q are positive, X' > X. The process can be continued, and Theorem 2 follows.
A good many results follow from the two theorems above. For instance, we have
Theorem 3. If the horizontal dimensions of a basin is magnified (shrunk) by a

constant factor, while the vertical dimension is unchanged, the frequency of any specified
mode of water waves in it is reduced (increased).

We shall consider the case of horizontal magnification, since the case of horizontal
shrinkage is entirely similar. Let the horizontally magnified basin be denoted by B'
and the original basin by B. We introduce a third basin B" obtained by shrinking B' in
all directions uniformly, so that B" is similar to B' but smaller, and in addition B"
and B have exactly the same free surface. Then by Theorem 1,

,2 - ,,2
<7 V. CT y

and since D obviously contains D" (water-occupied domain in basin B"), by Theorem 2
//2 ^ 2

(7 \ <7 ,

and Theorem 3 follows.
Since trapezoidal channels occur in practice very often, we shall indicate how to

obtain upper and lower bounds for the frequency of the first sloshing mode of water
waves in such a channel. For an upper bound, we can use a rectangular channel with
the same width at the free surface as the trapezoidal channel and a depth equal to the
maximum depth of the trapezoidal channel. For a sharp lower bound, we select a stream-
line in a rectangular channel of width b and depth d which is tangent to the trapezoidal
boundary (of the crosssection of the channel under consideration) at the free surface
and at the horizontal bottom (see Figure 1). The b and d have to be calculated to achieve
this. By Theorem 2, the frequency of waves in this curvilinear channel, which is exactly
the same as that in the rectangular channel for the same mode, provides the lower bound
needed. Since the curvilinear channel deviates from the trapezoidal channel mostly near
its corners, where the velocity is small, the lower bound is likely to be near the actual
frequency for waves in the trapezoidal channel.
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Fig. 1. The curve is a streamline in sloshing motion of the first mode in the rectangular channel. The
frequency of that motion provides a sharp lower bound for the first sloshing mode in the trapezoidal
channel. The curve is tangent to the trapezoid at three points: two at the level of the free surface, one

at the middle of the horizontal bottom of the trapezoid.

4. Gravity waves in superposed layers of homogeneous fluids. For superposed
homogeneous layers of different densities, within each layer (2.1) and (2.2) still are to
be satisfied, and (2.4) is still the free-surface condition. At an interface the conditions are

^(Pl<t>l — Pu<t>u) = g(pl — Pu)<t>y , (4>l)v = (<t>u)v = <t> V ■ (4-1)

where I means "lower" and u means "upper". One can easily verify that Theorem 1 is
still true, and that Theorem 2 is still true if we require that the interfaces as well as the
free surface must remain identical for the two basins under comparison. Under this
requirement, we can compare two neighboring states as the vertical scale is slightly
changed, and by continuation reach Theorem 3. In this comparison, analytic continua-
tions of or beyond an interface are needed if it is raised or lowered.

5. Differential system governing internal waves. Let the density in the absence of
wave motion be p0(y), and the pressure be p0 ■ Then

dpo/dy = —gpo . (5.1)

Let the velocity components in the directions of increasing x, y, and 2 be denoted by
u, v, and w, and let p and p be the perturbations in pressure and in density, respectively.
The linearized equations of motion are, after (5.1) has been used,

p„u, = —px , (5.2)

PoVt = ~Pv — (IP, (5.3)

Powt = —p, . (5.4)

The linearized equation of incompressibility is

Pi + vPo' = 0, (5.5)

where the prime indicates differentiation with respect to y. The equation of continuity
is then, since the fluid is incompressible,
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Ux + vv + w, = 0. (5.6)

Again, the time factor exp ( — ict) will be assumed for all perturbation quantities. Then

iff poll = px , iapoW = p, , (5.7)

and combination of (5.3) and (5.5) gives

v = _ _ lap _ (5 g)
a Po + gpo

Substituting (5.7) and (5.8) into (5.6), we have

+ p., + <r2Po I" -2 Vl 7 = o. (5.9)dy a po + SPo

If the direction numbers of the normal to a stationary rigid boundary are (I, m, n),
the boundary condition there is

lu + mv + nw = 0. (5.10)

At a free surface the pressure is constant. But the pressure variation has two parts:
the perturbation pressure p and the variation of the mean pressure due to the free-
surface displacement (denoted by ij). Hence the condition on pressure at the free surface
is

p - gpov = 0. (5.11)

The kinematic condition at the free surface is

v = v, ■ (5-12)

Combination of (5.8), (5.11), and (5.12) gives

V = 2 gPf" r (5.13)
<? po + gpo

It is well known, and it can be easily shown, that if p0' is never positive a2 is positive
(i.e., a is real), and that, for truly internal waves,

o-2 < —max {gpo /po)- (5.14)

6. Comparison theorems for internal waves. For the case of a horizontal channel
with depth varying with z but not with x (measured along the axis of the channel),
the variation of a2 with /c2, with k denoting the wave number in the x-direction, has been
discussed by Yih [3], who found that for the same mode

dQf) > °' d(l?) < °' (6-1)
where kc = <r. We shall not repeat the discussion.

We shall now show
Theorem 4. a2 increases if pn is reduced by a constant or if both p0 and p0' (hence-

forth assumed negative) are everywhere decreased, that is, if p0 is everywhere decreased
in such a way that — p0' is everywhere increased.

To prove this theorem let us compare two wave motions, one with
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Po = Pi , P = Pi , <y = <7-1 .

and the other with

Po = P2 < Px , P = P2 , <7 = <r2 , p2' < pi' < 0.

The two motions are near each other in the sense that p2 is only slightly less than p{ for
all values of y, so that </>i is nearly the same as cj>2 , and nearly the same as <r2 .

We shall first treat the case in which no free surface or other density discontinuities
exist. Consider the integral (with V denoting the fluid volume, as before)

I \(— P2P1*) + (— P2P1) + V2V+ t)Jv L\Pi /x \p 1 I* \<r 1 Pi + gpi /„_
dV, (6.2)

and another in which the subscripts 1 and 2 are exchanged. Since px satisfies (5.9) with
a replaced by a1 and p0 by pi , and p2 satisfies (5.9) with a replaced by a2 and p0 by p2 ,
(6.2) gives, upon use of the Gauss-Green theorem,

iv, / p2(lu1 + mvx + nw,)
J S

dS

Jv Lpi <Ti Pi + gpi J
dV, (6.3)

where S is the surface of V. From the integral which is (6.2) with subscripts 1 and 2
exchanged, we obtain the result

ia2 / Pi{lu2 + rnv2 + nw2) dS
•'s

= f — (jPlIP2I + Pi,Pi,) + —2—^—7 P„P2vJ V LP2 °2 P2 + gp2
dV. (6.4)

The left-hand sides of (6.3) and (6.4) are zero because of (5.10), the condition at the
rigid boundary. The difference between (6.3) and (6.4) is

[ (— - —)(P,rP2r + PuP2,) dV
Jv \p 2 Pi'

+ f ~ pa) + ~ PiuP2v dV = 0. (6.5)
Jv (cr2 p2 + gp2 Mi Pi + gp 1)

Upon making p2 close to p 1 , p, is close to p2 , crx is close to a2 , etc. Then quantities like
pi,p2x and so 011 are positive everywhere except possibly near the stagnation points of
the smaller basin, where their absolute values are small. Hence they are positive on the
average. Then, since

0 < p2 < pi and p2 < p/ < 0, (6.6)

(6.5) shows that a2 must be greater than o^2.
If there is a free surface, the left-hand sides of (6.3) and (6.4) are, upon the use of

the free-surface boundary condition (5.13), with p0 identified with p, or p2 , <r identified
with (71 or (j2 ,

r gP2<ri\v2 dS^ r gPi@2v\V2 dS, (6 7)
Js' Gi@2 * S' &\G2
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respectively, and the term

I gizlp*—r2 W2 dS, (6 g)
<7 iO~2

must be added to the right-hand side of (6.5), with S' denoting that part of S that is
the free surface. The conclusion that

f22 > ci2 (6.9)

therefore remains valid.
If there are internal density discontinuities terms like (6.8) but somewhat more

complicated must be added to the right-hand side of (6.5), and the conclusion (6.9)
remains valid.

Note that since the conclusion (6.9) is reached when (6.6) holds, by a comparison of
neighboring states, it is automatically guaranteed that wave motions of the same mode
are being compared. Furthermore, the restriction of neighboring states can be removed
by continuation through neighboring states, so that the same mode is maintained while
the two motions finally compared are no longer in neighboring states, that is, pi is no
longer near p2 . (Mathematically speaking, px being near p2 means (pi — p2)pi-1 « 1.)

Since for truly internal waves (5.14) holds, for small p0' the vertical velocity at the
free surface is very small, as can be seen from (5.13) and (5.8). Therefore when studying
truly internal waves (i.e., with free-surface waves excluded) we can treat the free surface
as rigid, and replace (5.13) by

p, = 0. (6.10)
We shall now assume p„ to be continuous, and attempt to see what effect a change of

shape or size of the fluid-occupied domain of a basin has on the frequency of internal
waves. For this purpose we need to use the Boussinesq approximation, which amounts
to ignoring the variation of p0 except for the term gp0' in (5.8) and (5.9). Whether we
consider an exponentially stratified fluid with

p„ = C exp (-02/) (6.11)
or a linearly stratified fluid with

PC = C( 1 - to), (6.12)
after the Boussinesq approximation is made we can write (5.9) as

Prx + P,Z - x2p„„ = 0, (6.13)

where

= wb- ^
Let the boundary of the basin be given by

F(x, y, z) = 0. (6.15)

For an open basin of the simplest shapes, z is a single-valued function of x and y. But
it can be multi-valued. For a closed basin flowing full, it is at least double-valued. The
condition at the boundary, (5.10), can now be written as
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Fxpt + F,pz - \2Fvpu = 0. (6.16)

Since we treat a free surface as a rigid surface and therefore a part of (6.15), we can
absorb (6.10) into (6.16).

Inspection of (6.13) and (6.16) gives
Theorem 5. With the actual pn given by (6.11) or (6.12) maintained unchanged

(i.e., with (}y equal to fi'y' after a scale magnification or reduction), if any horizontal
dimension of the basin is multiplied by M and the vertical dimension by N, i.e., if
x, y, and z in F(x, y, z) are replaced by

x/M, y/N, z/M,
then X2 is multiplied by N2/M2.

Hence if the widening exceeds the deepening, X2 (hence a2) is reduced, if the deepening
exceeds the widening, a2 is increased, and if the magnification (or reduction) of scale is
uniform in all directions, M — N, and a2 remains unchanged.
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