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Abstract. An integral equation method is used to obtain improvable lower bounds

for the second eigenvalue of the second-order "reduced" problem obtained from the

problem described in the title by singular perturbation methods. These lower bounds

are compared with results obtained directly by invariant embedding. The computational

aspects of the integral equation method are stressed. The method is shown to be quite

general and can be applied to a variety of boundary-value problems including those in

which the eigenvalue parameter appears in the boundary conditions as well as in the

differential operator.

I. Introduction. The problem of determining the natural frequencies of the trans-

verse vibration of a uniform rotating beam carrying a tip mass reduces to the study of

the following eigenvalue problem:

uIV - i«V( 1 - x' + 2y2)]T = P2u,

u( 0) = wT(0) = itn(l) = 0, mHI(1) = a2y2u(l) — y2p2u(l),

where one wishes to determine the dependence of the eigenvalues /32 on the parameters

a and y2. This problem possesses two major difficulties: (1) the differential operator

is quite complex so that solution in closed form is very difficult [1]; and (2) the eigenvalue

(32 appears in the boundary conditions as well as in the operator. The latter difficulty

is responsible for the principal novelty of the problem. It should be noted that the problem

is self-adjoint and has previously been studied by variational methods [1, 4].

The present paper is primarily concerned with illustrating the use of an integral

equation method previously described in [2] to obtain lower bounds for the eigenvalues
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(i2 and with comparing the computational aspects of this method with those of other,

less general methods, which can also be used to determine the eigenvalues of problems

with eigenvalue dependence in the boundary conditions. The historical background

of the problem is given in Sec. 2; the integral equation method is described in Sec. 3;

and numerical results for the "reduced" problem are given in Sec. 4.

2. Historical background. The problem of determining the influence of a tip mass

on the natural frequencies of transverse vibration of a uniform rotating beam clamped

at one end was first studied in connection with the design of helicopter blades. Handelman,

Boyce, and Cohen [4] derived the appropriate partial differential equation describing

the motion of a uniform beam, separated it assuming harmonic time dependence,

exp (ifSt), and put it into nondimensional form. Subsequently, Boyce and Handelman [1]

derived the corresponding equations for beams of variable density and flexural rigidity

and obtained results for the uniform beam using a variety of singular perturbation

methods. Following [1], the eigenvalue problem for a uniform beam is:

wIV — ia%u( 1 — x2 + 272)]1 = (52u, 0 < x < 1 ^

u(0) = w'(0) = w"(l) = 0, miu(1) = Y2a2MT(l) — 72/32w(1),

where u is the transverse deflection of the beam, a2 is the nondimensional speed of

rotation, and 72 is the ratio of tip mass to beam mass; Roman numerals indicate dif-

ferentiation with respect to x(0 < x < 1); and /3 is the eigenvalue parameter which is

a function of the parameters a and 72. It should be noted that the parameter y2 is-

defined in [4] as twice the ratio of tip mass to beam mass; this leads to a slightly dif-

ferent form of the eigenvalue problem.

Both Handelman, Boyce, and Cohen [4] and Boyce and Handelman [1] have com-

mented on the difficulty of finding a closed solution to the eigenvalue problem (1) and

have used singular perturbation theory to reduce the fourth-order problem to the

following second-order problem:

[t>'(l — X2 + 2y2)]1 = -^11, 0 < X < 1,
a (2)

V(0) = 0, »T(1) = (v2/a2)v(l).

The eigenvalues of (1) have been shown [1] to be related to the eigenvalues of (2) and

to those of the following fourth-order problem which has constant coefficients:

wlv = n2w, 0 < x < 1, ^

w(0) = wT(0), w"(l) = 0, wT,I(l) + n2y2w(l) = 0.

Boyce and Handelman [1] used several different methods to obtain approximate values

of the second eigenvalue of (2) and found that v22/a2 and also p22 increased with increasing

tip mass. Goodwin [3] converted the reduced problem (2) into a Fredholm integral

equation having a symmetric kernel which depends on the eigenvalue parameter;

however, Goodwin's paper does not contain numerical results.

The primary purpose of this paper is to describe an extension of the integral equation

method used previously in [2]; to show, by means of some simple counterexamples,

some advantages of these methods over those described earlier by Goodwin; and to use
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the new methods to compute improvable lower bounds for the eigenvalues of the "re-

duced" problem (2). A secondary purpose is to compare the computational aspects of

the integral equation method with those of other, less general methods such as invariant

embedding [10].

3. Integral equation methods. It is well known [5] that boundary-value problems

such as (1) and (2) can be rewritten as integral equations where the kernel of the integral

equation is an appropriate Green's function. Furthermore, in the case of problems with

eigenvalue dependence in the boundary conditions such as (1) and (2), Green's function

can be written as the sum of a function that is independent of the eigenvalue parameter

and one that is meromorphic in the eigenvalue parameter. Goodwin's method [3] for

obtaining improvable lower bounds for the eigenvalues of the integral equation

u(y) — X / G(x, y, \)u(x) dx = 0, (4)
Jo

where G(x, y, X) = GE(x, y) + GM(x, y, X), involves rewriting (4) (in operator notation)

as

(I — \Ae(\))u(x) = \Am(X)u(x), (5)

where the Fredholm operator A (X) has been decomposed as -Ab(X) and AM(X) to reflect

the dependence of G(x, y; \) on X; formally solving (5) to obtain an equivalent Fredholm

integral equation with degenerate kernel:

(7 - X(/ - XA^AmMMx) = 0; (6)

obtaining the first few terms of the eigenvalue equation of (6) as a power series in X;

1 + o^X + a2X2 + ■ • • = 0; (7)

and using the following formulae given by Spiegel [6] to obtain lower bounds for the

smallest positive root of (7):

Er = —«i , (8a)
h = 1

2 7^2 = «12 — 2a2 ; (8b)
A = 1

En = ^ocia2 — 3a3 — aj3. (8c)

The operator /1£(X) may be either the Fredholm operator used by Goodwin [3]

or the Volterra operator used by Jones and Goodwin [2], For problems such as (1) and

(2) the Volterra operator can be obtained easily by writing Green's function as:

y\ X) = 2 lc>(y) + Wy, X)]w,-(a:), 0 < x < y < 1,
»=-l

n

G2(z, y, x) = X) fr.(2/> X)ui(x), 0 < y < x < 1,
t =1

where ut(x), i = 1, 2, ■ • • , n, are a fundamental set for the nth-order operators on the

left-hand sides of (1) and (2); the coefficients c,(y) are determined by the continuity
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conditions on Green's function and its first n-2 derivatives and the jump discontinuity

condition in the n-lst derivative of Green's function; and the coefficients b,(y, X) are

determined by the boundary conditions. When -AB(X) is a Volterra operator, the inverse

operator (I — X^jj(X))-1 will exist for all values of X; however, the inverse of the corre-

sponding Fredholm operator will fail to exist at the roots of DAb(\). It should be noted

that if the kernel of (6) consists of a single term of the form X(x, \)Y(y, X)//(X), then

at least the first four terms of the canonical form of the eigenvalue equations obtained

for the two operators are identical [7], in agreement with a result obtained by Brysk [8]

for a special case. If, however, the kernel of (6) consists of more than one term, then

the canonical form (7) of the eigenvalue equation obtained from the Fredholm formula-

tion by multiplying the eigenvalue equation of (6) by an appropriate power of DAe(\)

will differ from that obtained from the Volterra formulation. This difference is due to

differences in the multiplicity with which the eigenvalues of AE(\) appear in the canonical

form of the eigenvalue equation (7) and is illustrated by the examples given in the Ap-

pendix. We note also that some care must be taken in handling problems in which

4m(X) consists of more than one term to avoid counting the poles of AM(X) with arti-

ficially high multiplicity. This multiplicity problem occurs for differential operators

of order higher than two and can be eliminated by using the trace formulae given by

LaGinestra [9].

4. Eigenvalues of the "reduced" problem. The "reduced" problem for the rotation

of a beam with tip mass has been derived by Boyce and Handelman [1] and is given by:

[v'(l — x2 + 2y2)]' = — 2\v(x), 0 < x < 1 ^

v(G) = 0, v\l) = Xd(1),

where X = v2/a2. Eq. (2) is equivalent to the integral equation

v{y) = 2X f G(x, y; \)v(x) dx, (9)
Jo

where Green's function, G(x, y, X), is given by:

(A + x\

\A - x)

Gi(x, y; X) =

X In

1 +
2A ^ i

•5 7 — X In (f*"D
0 < x < y < 1,

G,(x, r, X) - ± In (£-
X In

1 +
(j^)

2A — X In
A2 - 1 (i^i)

0 < y < x < 1,

and A — (1 + 2y2)i/2. Eq. (9) may be considered as a non-homogeneous Volterra integral

equation with the kernel

K(y, x) (10)
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which is equivalent to its formal "solution" [5]:

A + x

U(y) = X I J
X In .

1+ 14 "

r -x( j^t)]

■ ['»x I x>ln (i~)&] m(x) dx. (11)

Here Hk(y, z; X) is the resolvent kernel for k„(y, z; X). The eigenvalue equation of (11) is

1 - Xan = 0, (12)

where

On = / X(a:, X)F(y, X) da;.
Jo

Normally, only the first few terms of the eigenvalue equation (12) written as a

power series in X,

1 + ajX + a2X2 + a3X3 -(-••• =0,

are required to obtain lower bounds for the smallest positive root of (12) using Spiegel's

formulae [6]. However, since the first eigenvalue of (2) is X, = 1 (corresponding to the

eigenfunction v(x) = x), lower bounds for the second eigenvalue, X2 , can be obtained

from expressions based on simple modifications of Spiegel's formulae:

(X2), > , (13a)
<*i + l

(X2)2 > 7 2 7T (13b)
(«! — Za2 — 1)

(^2)3 ^ To o 3 1 \l/3 ; (13c)
(6aia2 — 6a3 — — L)

where , a2 , and a3 are given by:

«, - - (-1) In - In (^) , (14.)

* ln (a'»(- A1')+ ln (x=-0_

dx

a2

+ J /.'(-7^)

+ 2? { <4* - <A" + >»[>" (x^)_
dx, (14b)

and
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«3 - f i> w++ ah[m dx+/; (^±^)[h

dx + i Iln (x^)[ln (t^)]

'»(x^i) - i >° (^)) i [>» (j^) * (^)

■» (i^) - j. - (^j) -1} r«[-
+
+
+ {-2ln (t^t) - (^) (^V)+ i>} /„' ['" (x^)j ^

(14c)

The apparent complexity of (14c) results from the reduction of the iterated integral

fo (f0 if, k^X' y^k"(y' ^ dy) ln (1 - z) &) ̂

to a single integral by changing the order of integration with appropriate changes in

the limits of integration. This reduction substantially decreases the time and space

complexity of the computation. The bound given by (13c) could be further improved

by calculating additional terms of the resolvent kernel.

Lower bounds for the first and second eigenvalues of the "reduced" problem were

computed in single precision with a Burroughs B-6700 computer using an adaptive form

of Simpson's rule with the error parameter set at 10~8. The lower bounds for X, converged

rapidly to 1 for all values of y2. Fig. 1 is a graph of X2 vs. y2 showing the lower bounds

(X2)i , (X2)2 , and (X2)3 and the "approximative" (second) eigenvalue obtained by Boyce

and Handelman [1] using the Rayleigh-Ritz method. It should be noted that (X2) i ,

the first lower bound for X2 , is quite poor but that (X2)2 and (X2)3 agree quite well with

the Rayleigh-Ritz results. A complete analysis of the errors in (X2)3 requires knowledge

of the spectrum of (2); however, numerical experiments with functions with well-sepa-

rated zeros, such as cos x, indicate that when the first root is known exactly, Spiegel's

formulae can be used to obtain lower bounds for the second eigenvalue which are precise

to about one decimal digit less than the number of terms of the series expansion used

in computation, providing the ill-conditioned expressions (13 a, b, and c) are evaluated

in such a way that the round-off errors are reasonably small.

In general, it has been found that the lower bound for the first zero of these functions

is precise to about the same number of digits as terms used in computation [6], Thus,

the expected precision of the values of (X2)3 given in Table I is about two decimal digits.

In the case of the self-adjoint "reduced" problem (2), the precision of the results in

Table I could be verified independently using an invariant embedding technique described

by Scott, Shampine, and Wing [10], A Ricatti-like transformation was used to obtain the

following equations from (2):

^ = 71 + 2xfl2W> (15a)
dx (1 — x + 2y )
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Fig 1. The second eigenvalue of the "reduced" equation (2) as a function of tip mass.

-T1 -2x +<—W *■<*>■ (15b)

with the boundary conditions R(0) =0 and R(l, X) = —I/272 and the additional condi-

tion S(x) = 1 /R(x). Eq. (15a) was integrated using a standard fourth-order Runge-

Kutta method with step size of 0.01 until \R(x) | > 2; at this point Eq. (15b) was integrated

until |<S(z)| > 2. Integration of (15a) or (15b) with appropriate switching was continued

up to x = 1.00; at this point Newton's method was applied to the boundary condition

equation, R( 1, X) + (I/272) = 0, to obtain a new value of X. This process was repeated

until the value of X was stable to four decimal digits.

Results obtained by invariant embedding are compared with (X2)3 in Table I. These

results confirm the conjecture that the lower bounds (X2)3 obtained by the integral

equation method are precise to about two decimal digits. However, it should be noted

that the invariant embedding technique is restricted to problems which are self-adjoint

while the integral equation method is more generally applicable.

5. Eigenvalues for the fourth-order problem. Lower bounds for the first eigenvalue

of the fourth order problem (1) can be obtained from the results given in Sec. 4. It
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TABLE I.

Comparison of integral equation and invariant embedding result

Lower Bounds—Integral Equation Method Invariant Embedding Result

X (^2)2 (X2) 3 X2

0.1 5.399 5.865 6.000
0.2 5.551 5.987 6.100
0.3 5.911 6.321 6.408
0.4 6.492 6.890 7.000

0.5 7.288 7.691 7.799
0.6 8.291 8.712 8.800
0.7 9.496 9.947 10.020
0.8 10.898 11.389 11.500
0.9 12.495 13.035 13.116
1.0 14.286 14.883 15.000

has been shown by variational methods [1] that

/Sx2 > M,2 + ^ = M,2 + «2, (16)

where /Ui2 is the first eigenvalue of the boundary-value problem (3). The eigenvalue

equation of (3) can easily be determined as a power series in ^2, and Spiegel's formulae

(8a, b, c) used to compute lower bounds for m2 as a function of y2. In addition, Spiegel's

formulae can be modified to give lower bounds for the second eigenvalue, i±2\ but this

calculation is extremely ill-conditioned. Lower bounds for n* (y2 — 0) obtained from

(8a), (8b) and (8c), respectively, are

(mi2)i > 12.000, (mi2)2 > 12.358, and (Ml2)3 > 12.362

which compares favorably with the exact value of 12.362. Lower bounds for n-/ (72 = 0)

obtained from modified Spiegel formula are

(M22)i > 409.39, (M22)2 > 481.26; and (M22)3 > 483.24

which again compares favorably with an exact value of 485.52. Lower bounds for p.*

and ix22 for y2 ^ 0 are given in Fig. 2.

It is clear that the lower bound for (S2 given by (16) decreases with increasing tip

mass for all values of a2. It is also possible to calculate lower bounds for /322, from lower

bounds for both the first and second eigenvalues of (2) and (3) and an upper bound for

ft 2 [1].
The values of (X2)3 agree well with results given previously and it is unlikely that

new results will be obtained in this way.

It is also possible to rewrite (1) as an integral equation using Green's function and

to compute lower bounds directly using the integral equation techniques. This procedure

requires determination of a fundamental set of solutions for the operator specified on

the lefthand side and the boundary conditions of (1). Although power series representa-

tions of this fundamental set have been found [11], these series converge only for rela-

tively small values of a2. Since the results attainable by this route are limited, we have

not attempted to obtain lower bounds for /?! and /J2 directly. It is important to note

that in this case the multiplicity problem discussed in the Appendix will produce poor

lower bounds unless the trace formulae developed by La Ginestra [9] are used.
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Fig. 2. Lower bounds for mi2 and M22 as a function of tip mass.

6. Conclusion. Improvable lower bounds have been calculated for the second

eigenvalue of the "reduced" problem derived from the boundary-value problem describ-

ing the transverse vibration of a rotating beam carrying tip mass. The integral equation

method used is based on an unsymmetric decomposition of Green's function which leads

to a Volterra integral equation. The lower bounds agree with approximate results

obtained previously [1] by a variety of methods including the Rayleigh-Ritz method.

The current method offers significant conceptual and computational advantages over

these methods in producing improvable lower bounds which are uniform for all values

of the parameters. The precision of the current results (about two decimal) digits has

been confirmed independently by means of an invariant embedding method.

The integral equation method is general in scope and can be applied to many problems;

it is not restricted to self-adjoint operators as are variational and invariant embedding

methods. Furthermore, the current Volterra equation method offers substantial computa-

tional advantages not found in a related Fredholm equation method described previously

[3]; these advantages are derived from the differences in representation between the

Volterra and Fredholm resolvent kernels. Counterexamples which are given in the

Appendix show that care must ke taken in generalizing the procedure given in [3] for

problems where the meromorphic part of Green's function consists of more than one

term in order to obtain good lower bounds.
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Appendix. The purpose of this Appendix is to provide examples showing that care

must be taken in extending the procedure given in [3] to integral equations in which the

meromorphic part of the kernel consists of two or more terms.

It should be noted that the meromorphic part of Green's function for the second-order

"reduced" problem (2) consists of only one term. However, meromorphic parts of the

Green's functions for higher-order problems such as (1) and the fourth-order boundary

value problem describing the transverse vibration of a pipe containing flowing fluid

consist of two or more terms [2], and poor results will be obtained unless the multiplicity

problem is treated appropriately. Example A shows that incorrect results may be obtained

from a Fredholm formulation due to inclusion of the roots of DK[.(\) with multiplicity

greater than one; this difficulty can always be eliminated by using the Volterra formula-

tion. Example B shows that incorrect results can be obtained even with the Volterra

formulation if the reciprocals of the pole are counted more than once; this difficulty

can be avoided by using the trace formulae developed by LaGinestra [9]. It should be

noted that improved lower bounds for the first eigenvalue of a pipe containing flowing

fluid could be by the use of LaGinestra's formulae in [2],

Example A: Consider the boundary-value problem

u\x) = —\2u(x),

m(0) = u(l) = 0,

which has eigenvalues nV2, n = 1, 2, ■ • • . Green's function can be written either as

Gi(x, y) = (x - y) + [y( 1 - x)], 0 < x < y < 1,

G2(x, y) = [y( 1 - x)\ 0 < y < x < 1,



THE TRANSVERSE VIBRATION 203

or as

Gi(x, y) = -y + [y + x(l - y)], 0 < x < y < 1,

G2(x, y) = — x + [y + x(l — y)], 0 < y < x < 1.

When the portion of Green's function in square brackets is taken as the operator AM(X),

the first (Volterra) formulation leads to the eigenvalue equation

1 - x*(s)+ x*(il>) + ■ 0 w

while the second equivalent (Fredholm) formulation leads to the eigenvalue equation

1 + (I) + (I) + " ' = °' (b)

Spiegel's formulae applied to (a) lead to well-known results; however, Spiegel's formulae

applied to (b) lead to

y — = y — =t—i \2 i' t—t \ *

-77

X/ 3 ' K 36

Example B: Consider the boundary-value problem

u"(x) = —\u(x)

u( 0) = 0, u\ 1) = Xm(1),

with eigenvalue equation

cos \A — \/X sin y/\ = 0. (c)

The first few terms of the series expansion of (c) are

1 _ 3/2X + .(A) - X3(||) + • • • = 0, (d)

Gi(x, y : X) = (x - y) + V ̂  ^ ^ , 0 < x < y < 1,

G2(x, y : X) = y ^ ~ ^ , 0 < y < x < 1,

If the meromorphic part of Green's function is treated as a single term, the canonical

form of the eigenvalue equation obtained by the Goodwin procedure is identically (d).

However, if the meromorphic part of G(x, y; X) is treated as two terms, y/( 1 — X) +

(X/(I — X))(x — 1), then the first few terms of the eigenvalue equation are:

1 - 5/2X + || X2 + • ■ • = 0. (e)

From (d) we find that ^ 1/XA = 3/2 and X] 1 /Xh2 = 11/6 while from (e) we find that

X) 1/X* = 5/2 = 3/2 + 1/1 and £ 1/X*2 = 17/6 = 11/6 + 1/12.


