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ELASTIC MODULI OF A MEDIUM WITH LIQUID-FILLED CRACKS*

By H. D. GARBIN** and L. KNOPOFF (University of California, Los Angeles)

In earlier papers [1, 2], we have calculated the effective elastic modulus of a random

medium permeated by a sparse distribution of circular cracks. The boundary conditions

considered were those of vanishing normal stress on the surface of the cracks; this is

usually called the free-free (f.f.) boundary condition.

The problem of earthquake prediction is of topical interest. A model which has been

proposed to explain certain premonitory phenomena, involving elastic wave velocities

through the focal zone of anticipated large earthquakes, involves wave propagation

through a medium permeated by cracks which are air-filled and liquid-filled at different

stages of the premonitory process [3], The process of opening up cracks under large

regional stress is called dilatancy in the seismic jargon. In the early stages of a premonitory

episode, the cracks are partly air-filled; in the later stages, the cracks become fluid-filled.

The results obtained in the case of scattering from free-free cracks considered in [1]

and [2] are pertinent to the determination of the properties of the dilatant material in

the early stages of the premonitory episode. A consideration of the problem of the

scattering of elastic waves by a medium permeated by liquid-filled (l.f.) cracks would

complete the catalogue of properties needed to study this problem. In this note, we

show that the solution to this problem can be obtained without significant additional

calculation if we take advantage of the techniques and results already described in [1]

and [2],

We consider, as before, the problem of the scattering of long wavelength elastic waves

from an elastic medium in which a single circular crack of radius a is imbedded. The

crack has zero thickness, mathematically. Physically, the crack is filled with a nonviscous

fluid. We use a cylindrical coordinate system fixed in the crack (r, <j>, z). Then the boundary

conditions for this problem are

r„ + rrs = 0 ^ _>0±, 0 < r < a. W

U, + Tt,° = 0 (ii)

r,, , , riz , ur , U# , uz are continuous in the plane z = 0, r > a. (iii)

r„ and uz are continuous for z = 0, r < a. (iv; l.f.)

In these expressions r is the stress tensor for the scattered field, u is the displacement

vector of the scattered field and r° is the stress tensor for the incident field.

A comparison of the boundary conditions for the l.f. and f.f. cases shows that condi-

tions (i), (ii) and (iii) are the same in both cases. However, condition (iv) for the f.f.

case is
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T„ + Tzz° = 0; z —> 0±, 0 < r < a. (iv; f.f.)

Boundary conditions (i), (ii) and (iii) lead to coupled dual integral equations ([1],

Eqs. 17a, b and 8a, b). In the f.f. case, the condition (iv; f.f.) plus the condition (iii)

of continuity of u, (r > a) lead to the integral

fJ 0

r
df = (2a2 - k22)i"Jnipir), 0 < r < 1, ([1], 16a)

2 = °' r>1 ([1], 16b)

for the case of incident P-waves specified as in [1] (Eq. 14). Temporarily, the crack is

assumed to have unit radius.

By means of the conditions of continuity of the stresses tzi across the plane z = 0

for both the f.f. and l.f. cases, the jump in the normal component of displacement across

the circular crack can be written as

[w2] = 2fc22 ^ exp (in<t>) /
n - — co J 0

vlPln(£)Jn(£r) .
O J-2   k 2 ' '«2 Q-j

= 0, r > 1,

where the notation is the same as in [1] but we choose to recall especially that f-1Pi„(f)

is the part of the distribution function of the ntb order scattered P-wave potential which

corresponds to radiation symmetric in z:

00 /»CO

$ = X exP =F ̂ a»(f)} exp (~Vl |z|) d£. (2)
n - — co «'0

In the l.f. case [it,] = 0, so we may write Pi„(f) = 0. Hence the results for the l.f.

case may be obtained directly from the f.f. case merely by setting P,JS) = 0; this implies

s»(f) = 0. The results from [1] and [2] are

— ^1 + 22 av o-v ^_° A sin2 cos2 0oP} , (3)
X + 2m (X + 2m)0 I ' 3» ^ ' 3X, + 4/x„

- = — {l + P \ ]C ap3[cos2 80v sin2 <t>0v + (1 — 2 cos2 0Op)2 cos2 <p0p]\ , (4)
MM o I iv 3X0 + 4mo 7-\ >

In the case of an isotropic distribution of liquid-filled cracks of equal radius, the moduli

of the composite are

\X + 2m/ \X + 2m/o\ ^ 45 t;

Na no

32 Na3 X0 -f" 2mo

3X0 + 4mi
(5)

1 -I- - i__l o ~ (6)

15 v 3X0 + 4moJ V }

We note that the result for (1/(X + 2m)) in the case of an isotropic distribution of

cracks could have been obtained from the following physical argument. Filling the

cracks with a fluid which transmits compressional stresses means that the bulk modulus

(K) of the composite will be the same as that of the unflawed material Knl. The statement

Pi„ = 0 fulfills this condition. Hence

1 The authors are indebted to B. Budiansky for pointing out this condition.
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(X + 2ju) — 4/3(/j) = (X + 2fi)0 — 4/3jUo .

If we substitute from (6) into this expression, the result (5) follows. However, we may

comment that this physical argument would have been inadequate to give us the results

(3), (4) for the anisotropic distribution of cracks.
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