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1. Introduction. There has of late been much interest in universal solutions for

homogeneous isotropic thermoelastic materials. Petroski and Carlson [1] have shown that

there is a certain paucity of universal solutions, that in the case of incompressible

material there are only two types of solutions, and that in the compressible case there

is none, except for the trivial solution with a constant temperature field.

One reason for this paucity in the incompressible case is the fact that temperature

fields must be of the form

e = k + pip + qz (1)

(using cylindrical coordinates (r, <p, z)) according to a theorem by Hamel [2],

In this paper we are concerned with a subclass of thermoelastic materials for which

Hamel's theorem is not applicable, and we are able to show that there exist four types

of universal solutions for this subclass. In the last section of this paper we consider a

compressible material and prove that for suitably chosen subclasses one can find more

universal solutions.

2. Thermodynamic preliminaries. We will use the notations generally found in

rational thermodynamics (e.g. Truesdell [3]). Let F = dx/dx be the deformation gradient

of the deformation x = x(X), c_1 = FF' the left Cauchy-Green tensor, T the Cauchy

stress tensor, 6 the temperature, g the temperature gradient, h the heat flux, rj the

specific entropy and \p the free energy. According to the principle of equipresence, the

constitutive equation of a simple thermodynamic material may be written in the form:

<t> = 6(f", e', g') (2)

where <f> stands for the set (T, h, tp, v) and F', 6', g( denote the history of F, d, g, respec-

tively.

If the equation

<t> = C(F, e, g) (3)

holds, the material is called thermoelastic.

A thermodynamic process has to satisfy the dynamical equations and the first law

of thermodynamics, while the second law is used to put restrictions on the material

functions. Hence we have the equations:

Cauchy 1: div T + pb = px, (4)
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Cauchy 2: T = Tt, (5)

Fourier-Kirchhoff-Neumann: pe = w + div h + ps (6)

where b is the body force, e the specific energy, w the specific work and s the specific

heat supply.

Fourier material differs from general thermoelastic material by the special form of

the heat flux

h = K(F, d)g (7)

where K is the heat flux tensor and h is linear in g.

A thermoelastic material is called incompressible homogeneous isotropic and satisfies

the second law of thermodynamics if the constitutive equations can be written in the form

T = -pi + 2 p,
(§± -i _ d± \

°\dl ° dll7 (8)

h = (<p0l + <PiC + f-iC ')g (9)

where 7 = tr c~\ 7/ = |(/2 — tr c"2) and \p = \f/(I, II, B), <p,= <p,(7, II, 6, gg, gcg, g-c_1g).

For the incompressible homogeneous isotropic Fourier material we obtain the same

form except that

= <p,(I, II, 6). (10)

3. Universal solutions. A universal solution for a thermodynamic material consists

of a deformation and a temperature field which can be produced in every thermodynamic

body by applying surface tractions and heat fluxes alone without the help of specific

body forces and heat supplies. Therefore some authors call them controllable solutions.

Since we are here dealing with static deformations, we have x = 0 for controllable

solutions. Hayes, Laws and Osborn [9] have previously considered universal motions

in thermoelasticity.

In mathematical notation, the problem consists in determining c-1 and 9 so that the

following conditions are satisfied without referring to the special form of the constitutive

equations:

div T = 0, (11)

div h = 0, (12)

Rc'\m = 0, (13)

where Rimc~' is the Riemann tensor based on c_1 and T is symmetric. The constitutive

equation of an incompressible material has the form T = pi + S (p being an arbitrary

pressure) which yields

div S = grad p (14)

instead of (11).

In the paper of Petroski and Carlson [1], the problem of finding all universal solutions

for a homogeneous isotropic thermoelastic material is solved. It is shown that for h

depending on 6 the condition 6 = constant results immediately. This is also true for

Fourier material; hence we restrict our analysis to material of the form (8), (9) with
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V, = *,(/, II). (15)

4. Controllability conditions. Inserting T in (14) we get the same conditions as

Petroski and Carlson [1], Conditions (16)-(24) are the same conditions on which

Ericksen's analysis [4] and results are based. The following tensors must be symmetric:

(We will use direct notation where it is useful in the analysis.)

<f",U . (16)

c\ U , (17)

/|i(c-%l. + [/|i(0'(]L (18)

III* (c_1)\|i + [III (c_1)Mu + IU c\u - [/\< c\]U . (19)

-II\k c'i\i - [II\i C%] U , (20)

V/®c_1V/, (21)

VII ® c" VJ + VI <g) c-'VII -VI® cVl, (22)

VII ® c~lVlI - VII ® cVl -VI® cVII, (23)

— VII ® cVlI, (24)

[ffi(c_1)%]|* + gtic'ViU, (25)

[*C\]|. + (JkC i\i , (26)

g ® c^Vl + VI <g> (f'g, (27)

c_1g ® g, (28)

g (x) c-'VJJ - g ® cV/ + V// <g) c_1g -VI® eg, (29)

g ® cVII + V// <g) eg, (30)

g ® eg. (31)

In the case that g = Vd ^ 0 holds, (28) and (31) yield that g is an eigenvector

of c and c_1 and hence

eg = Xg, (32)

c_1g = (1/X)g, (31)

where X = X(7, II).

Therefore we can draw two conclusions:

1) If c'1 and d provide a universal solution, then the constitutive equation of h

reduces to

h = ^01 + «?iXl + <p-i - l^g = Mg (32)

where n = n(I, II).
2) Universal solutions are not suitable for determining the constitutive equation of

both thermoelastic and Fourier material. This is not possible except in the special case
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of material for which

h = Mg (33)

Inserting (33) in (12) yields

div mg = m div g + ^ V/ g + V//-g = 0

This equation is satisfied independently of the choice for /n if the following conditions

hold:

div g = 0, (34)

g-VJ = 0, (35)

g-V/J = 0, (36)

9% = gtf. (37)

and from 6|*f = 6\we get

The conditions (34) and (37) do not yield the results which are obtained from Hamel's

theorem, namely 6 = k + p<p + T~< as do the corresponding conditions in the analysis

of Petroski and Carlson [1], e.g. 0 = a log r satisfies (34) and (37).

Many steps in the following analysis are analogous to the paper of Petroski and

Carlson [1] but the proofs are made much simpler by directly applying the results

obtained by different authors in the field.

We will consider two cases: A) I and II not both constant, B) I and II both constant.

5. I and II not both constant. From the paper of Ericksen (4) and Harris and

Shiau [5] all c_1's solving the conditions (16)-(24) are known. These are the so-called

families 1-4 (cf. [6]). In order to be universal solutions of our problem, these families

have to satisfy (25)-(31) in addition. For these families Ericksen [4] has shown that

if I and II are not both constant they are functionally dependent on a function /3 and

the surfaces /3 = constant are parallel planes, concentric cylinders or concentric spheres.

VI and VII are parallel to each other and in suitably chosen coordinate systems parallel

to e* , er or e„ , respectively. (We use (x, y, z) for cartesian coordinates, (r, <p, z) for

cylindrical coordinates and (p, <p, ̂ ) for spherical coordinates; \p is used here to avoid

confusion with the temperature field 6.) If either I or II is constant, the above conclusions

hold for the one that is not constant.

Conditions (35) and (36) yield that VI and VII are orthogonal to g unless I or II

are constant. Next we show that VI, VII and g are eigenvectors to the same eigenvalue.

Since they are eigenvectors of c and c'1, we have:

1
eg = Xg, c g = - g,

cVl = AVI, c~lVI = j VI,

cVII = AVII, c~1VII = \ VII.A
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From (27) and (30) it follows that

|v/09 + |j®V/ (symmetric), (38)

AVII ® g + \g 0 VII (symmetric). (39)

J ~ J) (VJ # g - g ® V/) = 0 (40)

Hence we get

(A - X)(VII (X) g - g (x) VII) = 0. (41)

If I is not constant, VI must be orthogonal to g and this yields Vl(x)0^<7(x)V/

and hence 1 /A = 1/X. In case of VI = 0, VII 0 holds and we have A = X.

In order to find all universal solutions in this case we have to look for subfamilies of

the families 1-4 with I and II not both constant for which the eigenvalues belonging to

the eigenvectors ex , er or ep , respectively, are twofold. If there were such subfamilies

the following equations would hold:

tr c = 2Xt -|- X3 (42)

detef1 = Xx2X3 = 1 (43)

Hence we have

tr c~1 - 2Xj = 1/X,2 (44)

Eq. (44) is written out for each family in Table I, and it can easily be read off this

table that there are no such subfamilies. We have used the same notation as Truesdell

and Noll [6],

TABLE I.

A 2 1
2/^2Family 1 — + B2r2 + B2C2 +

A2B2

Family 2 2AB2x +  b ttT" + "55 - 4AB2x = 1
2Ax 1 2Ax ' B2 AA B x

Family 3 </> - B) + r°(+ D') + + f -

aY - By

A2DV + (A3 + A3C2 - 2A2BD2 + A2F - 2A3 - l)r9

+ (-3A3B - A3BC2 + A2B2D2 + A3E2 - 2A2BF2 - 6A3B)r*

+ (3A352 - A3BE2 + A2B2F2 + 6A3B2)r2

+ (-A3B2 + 2 A3B3) = 0

=>

D = B = E = 0 which gives a constant subfamily

Family 4 R12 - 2/R6 + r12 = 0
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6. I and II both constant. In this case only conditions (16), (17), (25), (26), (28)

and (31) are not satisfied identically by c and c~' and they are equivalent to the following

equations:

c , = Ag, , ^ A = j = ^ (45)

= A9i , (46)

eg = c,g, (47)

c" g = -g. (48)

Setting a: = g/\g\, we can write c and c_1 in the form:

c = (eL — e3)a (x) a + (e2 — e3)b (x) b + e3l (49)

c"1 = (- - -)a ® a + (- - -)b ® b + - 1 (50)
\ei ej \e2 e3/ e3

where a, b are unit vectors. Inserting this in (45) and (46) yields

= F(6)61, if e, * e3 , (51)W e\Je\k

(&'&,)|, = G(0)0\, if e2 ^ e3 . (52)

Now there are two cases to be considered: a) all eigenvalues are different, b) two eigen-

values are equal. (The case et = e2 = e3 is trivial).

a) In the case that all eigenvalues are different, (51) may be written in the form

a'U + a'Oili = F(d)(e\ke\lc)1/2ai . (53)

Since |a| = 1 holds, we have o,|,o'a' = 0. Then (53) yields

a'|, = F(0), (54)

= 0. (55)

Using the same arguments as Ericksen [4], we can conclude from (55) that V(V02)

and V0 are parallel, so that |V0j = 1(9) holds, and for the Gaussian curvature K, and

the total curvature K2 of the surfaces 6 = constant we find

K1 = a'\t = (56)

K2 = M(a*'|.)2 - aT Oi|> - a'I> a'o,!* a"] = K2{d). (57)

Hence the surfaces 6 = constant are planes, circular cylinders or spherical shells.

Considering curves x = x(s) with dx/ds = a, we find

d2x/ds2 = ^ a = a (x) V ^ = Oi|, o' = 0 (58)

These curves are straight lines and therefore the surfaces 0 = constant are parallel

planes, concentric circular cylinders or concentric spherical shells.

al) The surfaces 6 = constant are parallel planes. In this case there is a cartesian
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coordinate system (x, y, z) for which 6 = d(x) holds. Since big we have bi = 0, b2 =

cos -q, = sin ?; and from (52)

6* | < = 0 and 6*6, |» = (6, |, — 6»|y)b* = 0 (59)

Hence

—sin i)i)v + cos 7)iu = 0 „
=> *7. = Vz = 0

cos t)i)y + sin 1)17, = 0

and c"1 depends on j only.

From the condition Rl212c_1 = 0 we get r?/ = 0 and hence r? = constant. In this case

the homogeneous deformation and the temperature field 6 = ax + b are the only possible

solution which satisfies (34) with 6 = 6(x).

a2) The surfaces 6 = constant are concentric circular cylinders. In this case there is

a cylindrical coordinate system (r, <p, z) such that 6 = d(r) holds. In the above manner

we can conclude that &i = 0, b2 = r cos rj, b-, = r sin r? and &*|, = 0, 6'6,|, = (6,j,• —

6,|,)6' = 0 holds. Hence

—r sin + cos rjrjz = 0 n
=* v* = Vz = 0

cos r?ij„ + r sin i/rj2 = 0

and c"1 depends on r only. Here Ericksen's analysis yields that the eigenvalues cannot

be constant unless -q is constant; this leads to

0 0

c"1 = 0 e2 0

0 0 e3.

and 6 = 0(r) must satisfy the Eq. (34):

e„ + - dr = 0 (60)
r

for which 9 = a log r + b provides the general solution.

a3) The surfaces 6 = constant are concentric spherical shells. In this case there

exists a spherical coordinate system (p, <p, \p) such that 6 = 0(p), and in the above manner

we have bi = 0, b2 = p cos 17, b3 = p sin <p sin rj and 6*|» = 0, b'b,,|( = 0. Hence

i (d . d . \ n
—: I — sin <p cos ij + — sin ij I =0
p sm <p \d(p d\p /

(a d . . \ _
P\!hj/ 008 V ~ dp Sm ^ sm V =

=> i)v = 0, rif = —cos <p, => t) = constant,

and by the same argument that Ericksen uses, we have

ex 0 0

c~l = 0 e2 0

.0 0 e3
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6 = 0(p) must satisfy 0PP + 2/p{d„) = 0 and therefore it must be of the form 6 = ap~' + b.

b) In the case that two eigenvalues are equal, c can be written in the form

c = (ei — e3)b 0 b + e,l. (61)

In addition, VI = VII = 0 holds. As Kafadar [7] has shown, these conditions yield

b = constant. Hence we can find a cartesian coordinate system (x, y, z) for which b = ex

holds and b can be written in the form (1, 0, 0) and c_1 must be of the type

et 0 0

0 e2 0

.0 0 e2

Now there are two possibilities:

bl) b || g. Here we have g/jg| = constant and the surfaces 6 = constant are the

planes x = constant and from this and (34) we obtain 6 = ax + b.

b) big. This gives: b g = 6Z = 0. Hence 6 does not depend on x and it must be of

the form 6 = 0(y, z) and has to satisfy (34) which reads in this case

A20 = + dtl = 0. (62)

Therefore any plane rotation-free temperature field provides a solution.

7. Universal solutions for compressible material. The Cauchy stress tensor T

of a compressible homogeneous isotropic thermoelastic material may be written in

the form:

T = 2P E a'1 (63)
dln dc

where \p = \p(d, I, II, III) and III = det. c~\ Inserting (63) in (11) leads to

+2 s HH/lM+2- s Si- °- <64)
The first two right-hand-side expressions yield the conditions used by Ericksen [8] to

show that the homogeneous deformation is the only solution. For n = 3 the last term

gives

V 9 = 0 =*• 6 = constant. (65)

To obtain a non-trivial solution for the temperature field we must restrict our analysis

to materials with

i = i(I, II, III). (66)

In this case Eq. (64) is satisfied by the homogeneous deformation and gives no restriction

for the temperature field.

The constitutive equation for the heat flux h does not reduce for compressible

Fourier material and we have to evaluate Eq. (12) with h of the form (g) and <p, =
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<Pi(I, II, III). Since the invariants are constant, the coefficient functions are constant,

too, and Eq. (12) yields:

div g = 0, (67)

div eg = 0, (68)

divef'g = 0, (69)

where we have made use of the fact that c and c_I are constant.

Now we introduce the notation (?% : 0|'; and rewrite (67)-(69) in the form:

tr G = 0, (70)

tr cG = 0, (71)

tr c~lG = 0, (72)

For every homogeneous deformation there is a cartesian coordinate system (x, y, z)

such that c may be written in the form

V 0 0'

c 0 X22 0

0 0 X32

(73)

and Eqs. (70)-(72) are equivalent to

1 1 1

X,2 x22 x32

xr2 xr2 x3-2

= 0. (74)

There are three possibilities:

a) All eigenvalues are different. Then the only solution of (74) is 6IX = 0„„ = dtt = 0

and 6 must be a linear function of x, y and z.

b) Two eigenvalues are equal, say Xi2 = X22. Then the only solution of (74) is Bxx +

6yu = 0, that is, 6 must be an arbitrary plane rotation-free field orthogonal to the main

stretch.

c) All eigenvalues are equal. Then (74) yields Ad = dxx + + Szz = 0. Therefore

d may be an arbitrary rotation-free field.

8. Results. For homogeneous isotropic incompressible Fourier material we have

found the following four types of universal solutions:

1) Stretching and shearing of a rectangular block together with a constant gradient

temperature field in the direction of the stretch:

x = AX, y = BY + CZ,z = DY + EZ, 6 = ax + b, A(BE - CD) = 1.
2) Inflating and stretching of a sector of an annular wedge together with an axial

temperature field:

r = AR, <p = Bcj), z = (A2B)~1Z, 6 = a log r + b.

3) Inflating and azimuthal contracting of a sector of a spherical shell together with

a radial temperature field.

p — AP, ip = ±(/>, ̂  = -F-ASI', 6 = ap b,
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4) Stretching of a rectangular block with equal transverse contractions together with

an arbitrary plane rotation-free temperature field orthogonal to the stretch.

x = A2X, y = A-'Y, z = A~lZ,

6 may be any solution of 6VV + = 0 .(A, B, C, D and E and a, b are constants.)

Petroski and Carlson [1] found that only type 1 and type 4 with 9 — a<p are universal

solutions for homogeneous incompressible isotropic thermoelastic material.

For compressible material we had to restrict ourselves to Fourier material with

T depending on c only and not on 6. We have determined the following universal solutions:

a) homogeneous deformation with any temperature field obeying 6XX = Bv„ = 6„y = 0.

b) homogeneous deformation with two equal eigenvalues and any temperature field

obeying dzx + 6uy = 0 (ex and e„ being the corresponding eigenvectors).

c) homogeneous inflation or contraction with any temperature field obeying Ad =

SXX + Qyy + dzz = 0.

The above analysis shows that the Fourier subclass of thermoelastic material differs

from the general thermoelastic material by its universal solutions which provide the

basis for experimental tests to find out whether or not a given material is Fourier, in

the sense that failure proves that it is not Fourier. Thus the mathematical theory justifies

this classification of thermoelastic material which would make no sense if no ways of

experimentally distinguishing between the two classes were available.

On the other hand, the universal solutions found in our analysis are no help in

determining the constitutive equations of the heat flux of an incompressible material.

The response of Fourier material to universal solutions is determined by only one

function while its general response requires three functions.

We conclude with two observations. The existence of universal solutions for Fourier

material suggests further investigation of this subclass of thermoelastic materials. But

the impossibility of determining the constitutive equations raises some doubts about the

concept of universal solution and its usefulness. A class of materials defined by consti-

tutive equations, that do not admit any universal solutions with the property that the

response functions can be uniquely determined from them, makes no sense to the experi-

mentalist.
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