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1. Introduction. Many questions remain unanswered about the classical problem
of the two-dimensional steady flow of a viscous fluid in the presence of a half-plane.
In the context of the Navier-Stokes equations, neither existence nor uniqueness of a
solution has been rigorously established. Various approximate theories as well as numer-
ical analysis do provide convincing evidence of the existence and general character of
the expected solution. The uniqueness question has been less well explored. For the
Oseen equations Olmstead and Hector [7] have demonstrated the nonuniqueness of
the half-plane problem. By application of the Wiener-Hopf technique, they obtained
a rather complicated integral expression for the homogeneous solution. The purpose of
this note is to present a very simple and concise form of that homogeneous solution,
and to examine its behavior. The possible connection with the Navier-Stokes problem
is also discussed.

Consider the steady two-dimensional flow exterior to the half-plane (y = 0, x > 0)
where the velocity components u(x, y) and v(x, y) together with the pressure p(x, y)
are required to satisfy the Oseen equations.

du dv du dp 2 dv dp 2 , .s + sr0' ms--s + v"' mJi=-yy + v'- (ll)
Here 7n > 0 is some parameter of the problem, although any such parameter could be
eliminated from the half-plane problem by a redefinition of the space coordinates.
However, it will be convenient to have this parameter available for later discussion.

In the homogeneous problem, the boundary conditions take the form

u = v = 0 on y = 0, x > 0; ^ ^

u —> 0, v —> 0, p —> 0 as r—>oo

where r — (x2 + y2)1/2.
A nontrivial solution of (1.1, 2) is provided by the expressions

u(x> y) = r(r -°x)1/2 ^ ~ exp ~

C (r — rV/2
v(x, y) = -£—  [1 - exp [—\m(r - x)]], (1.3)

\ C0my
p(*. y) = -r(r _ -
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for any choice of the multiplicative constant C0 . These velocity components correspond
to the stream function

i(x, y) = C0{2(r - x)l/2 - (2x/m)1/2 erf [(m/2)1/2(r - x)1/2]} (1.4)

where the half-plane (y = 0, x > 0) coincides with the streamline <p = 0.
Verification that (1.3) is in fact a solution of (1.1) is tedious but straightforward.

A shortcut to verification comes from observing that the stream function can be expressed
as \p = \p0 + <Ai where \p0 = 2C0(r — x)1/2 and ^ = — (2ir/m)1/2C0 erf [(m/2)1/2(r — z)1/2].
Then it is relatively easy to verify that VVo = 0 and VVi = mdipi/dx. Olmstead [5]
has shown that these conditions are sufficient to yield a solution of (1.1) with p =
— m d\p0/dy. Verification of the boundary conditions easily follows.

The details by which the concise expressions of (1.3) were obtained from the integral
expressions of [7] are omitted here. It is simply a matter of recognizing that the desired
integrals can be put in terms of some others which have been evaluated by Gautesen [1],

The homogeneous solution (1.3) is interesting not only in its own right, but also for
the implication of nonuniqueness in certain inhomogeneous half-plane problems. For
example, in the case of uniform flow past the half-plane, the boundary conditions attached
to (1.1) are

u = v = 0 on y = 0, x > 0; ^ ^

u —* 1, v —> 0, p —> 0 as r —> oo , 0 < 0 < 2ir.

Here 6 = tan-1 (y/x).
A symmetric solution of (1.1, 5) has been derived by Lewis and Carrier [4] and

Kaplun [2], It can be expressed as

(r _ ry/2
u(x, y) = erf [(™/2),/2(r - *)1/2] - \2ir*j,*r [1 " exp (->(r - x))],

v{x, y) = (2irni)1/2(r - x)1/2r ^ _ exp ~ (L6^

P(x, y) = (m/2tt)1/2 (r

These velocity components correspond to the stream function

4>{x, y) = y erf (f) (r - z)1/2] - Jxy/a [1 - exp - x))] (1.7)

where the centerline (y = 0, — < x < ro) coincides with the streamline \p = 0.
From a physical viewpoint it is perplexing to find that (1.3) can be added to (1.6)

and still have (1.1, 5) satisfied. As pointed out in [7], other conditions must be imposed
before (1.6) becomes the unique solution of (1.1, 5). In this example, it seems natural
to impose a symmetry condition and thereby preclude (1.3). However, in problems where
symmetry is not a logical specification, then the role of (1.3) is unclear. Such a situation
arises, for example, in the problem of a vertical point force in front of the half-plane as
treated by Olmstead and Byrne [6].

2. Properties of the homogeneous solution. The fluid motion described by the
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homogeneous solution (1.3) is that of circulation around the half-plane. In particular
the stream function relation (1.4) implies that \f/ = F[(r — x)1/2\ where

F(z) = C0{2z - (2m/ir)in erf [(m/2)1/2z]}

is monotone for z > 0 and infinitely differentiable. Inversion of the stream function
relation yields (r — x)l/2 = or equivalently

y2 = [F-'wrrwr + 2*}. (2.1)
Thus the streamlines form a family of parabolas with focus at the origin, and \f/ = 0
corresponds to the half-plane (y = 0, x > 0).

The means for generating this circulatory motion around the half-plane can be
explained from the asymptotic behavior of the velocity and pressure as r —> ». Substi-
tution of polar coordinates into (1.3) gives

u = C0 cm^d/2} ^ ^ _ cos 0))]

v = C°^ ~ exp (~5mr(l - cos 0))] (2.2)

P ~ - ,O^T/2-
— mCo cos (0/2)

(2 r)1

Hence it is seen that u, v, p are each 0(r~I/2) uniformly in 6 as r <*>. This behavior
implies that the work done over a circle of infinite radius is nonzero even though the

velocity and pressure both tend to zero. That is, as r —> c°,

p(w2 + v2)I/2r cos (6/2) dd 0.
/Jo

To determine the forces exerted on the half-plane by the flow, the normal stress
Tvv = ~V + dv/dy and the shear stress rxv = du/dy + dv/dx must be evaluated on each
side of the half-plane. It is found that

tvv{x, 0+) — t„„(x, 0 —) = p(x, 0+) - p(x, 0 —) = —23/2C0mx'1/2, ^ ^

txv(x, 0+) = tiu(x, 0 — ) = 0, x > 0.

Thus this flow produces no drag on the half-plane, but the jump in pressure does provide
a net lift. These results were obtained in [7] by means of the Wiener-Hopf technique.

The vorticity a> = dv/dx — du/dy is found to be

, ^ mir1/2(r — z)1/2 ^ i / w fa a\
w(x, y)   Yr exp (-p(r - x)). (2.4)

Along any streamline, the vorticity depends only on the distance from the leading edge
of the half-plane so that « = c(\p)r~\ Also, the vorticity vanishes on the half-plane
for x > 0.

The velocity components vanish on the half-plane and at infinity; consequently
they attain extremum values in the interior of the flow field. The critical points are
easily determined from the gradients of u and v. It is found that each critical point
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depends on the number N* = 1.256 • • • which satisfies the transcendental equation

exp (N*) = 2N* + 1. (2.5)

If C0 > 0, then u sgn y > 0 and v > 0 with

2 „ A C0(2mN*)1/2 (n 2 w A
Umax ~ "V ' m ) 2N* + 1 M\ ' m ) Wmin ' (2 0)

(-1 N* n) - 2C0(2mN*y/2
Vm"x m ' ) 2N* + 1

Moreover, all of the critical points

lie on the same streamline.

3. The Navier-Stokes problem. For Navier-Stokes flow the nonlinear equations

du dv
dx + dy~

m\u^ + vd-f\ = -^+ V2u (3.1)r du , 3m"| dp

f dv ay"| dp 2lUr + T = ""I- + V vL dx dyj dym\ u — + vL dx

are considered instead of the Oseen equations. These homogeneous equations together
with the homogeneous boundary conditions (1.2) pose an interesting problem, but it
should be noted that the implications are not quite the same as for the linear problem.
The existence of a nontrivial solution to the nonlinear problem would not immediately
imply nonuniqueness as it does in the linear case. The reason, of course, is that the
homogeneous solution could not simply be added to an inhomogeneous solution and still
satisfy (3.1). Nevertheless, a nontrivial solution of the homogeneous problem (3.1, 1.2)
would certainly challenge whether a related inhomogeneous problem was well posed.

Some tentative arguments can be made about a possible solution of the homogeneous
problem (3.1, 1.2) in the asymptotic sense as m —> 0. In particular, a solution with the
same general character as (1.3) is sought.

With m —> 0 and (x, y) confined to some bounded region near the half-plane (y = 0,
x > 0), an inner problem is suggested by (3.1) with m = 0. A solution to these Stokes
equations which satisfies the homogeneous conditions on the half-plane is provided by

, , Cm3/2y(r — x)1/2
u(x, y) = — ^ — ,

Cm3/2(r - r)3/2
v(x, y) = - (f2r X)~ , (3.2)

Cm3/2v

P{X' V) = ~r(r - xV'
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The velocity components are derivable from the stream function

$(x, y) = (Cm3/2/3)(r - ,r)3/2. (3.3)

As might be expected, u and v diverge as r —» <*>, 0 < d < 2w, and so fail to satisfy the
desired conditions at infinity.

For a flow with the same general character as (1.3), it is natural to ask that the
behavior at infinity correspond to the potential flow solution for circulation around a
half-plane. This well-known result (e.g., see Lamb [3]) can be expressed as

u{x, y) = Cm1/2y/r(r — x)1/2,

v(x, y) = Cm1/2(r — xfn/r, (3.4)

p(x, y) = —C2m2/r

with the stream function

4>(x, y) = 2Cmu\r - x)u\ (3.5)

The velocity components and pressure given by (3.4) satisfy the full nonlinear equations
(3.1) and they have the required circulation behavior at infinity. Of course, the homoge-
neous conditions on the half-plane are not satisfied.

Both of these stream functions, for the inner problem and \p for the outer problem,
are derivable as asymptotic limits from the single expression (1.4). Let C0 = m1/2C,
X = m2x/2, Y = to2?//2, R = m2r/2. Then (1.4) can be expressed as

l 1/2

\j/{x, y) = C?n1/2|2(r — x)w2 — erf
m

= 2xnC{2m~u\R - X)I/2 - tr,/2 erf [wT1/2(i? - X)1/2](. (3.6)

Now for m —» 0 with fixed x, y, it is easily found that \p —» $ in the inner limit. More-
over, for m —> 0 with the stretched variables X, Y fixed, then \p —» \p in this outer limit.

These arguments do not prove the existence of a small m solution of (3.1, 1.2),
but do suggest that possibility.
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