170 QUARTERLY OF APPLIED MATHEMATICS
Jury, 1975

THE SANDERS-KOITER SHELL EQUATIONS CAN BE REDUCED TO TWO
COUPLED EQUATIONS FOR ALL MINIMAL MIDSURFACES*

By
G. E. LATTA anp J. G. SIMMONDS

University of Virginia

Abstract. For an elastically isotropic shell of constant thickness with an analytic
midsurface of zero mean curvature, it is shown that the linear Sanders-Koiter equations
can be reduced exactly to two coupled fourth-order partial differential equations, involv-
ing as unknowns a stress function and the rotation of the midsurface about the normal.

1. Introduction. The partial differential equations of classical, linear shell theory
are elliptic and of eight order. These equations may take a variety of forms depending
on the choice of the dependent variables, but for shells subject to static edge loads only,
the static-geometric analogy suggests that dual pairs of dependent variables ought
to be chosen.

A fundamental problem in linear shell theory is to reduce the governing equations
to two coupled fourth-order equations. Such a reduced system can be expected to be
immensely more amenable to analysis than its parent, especially with regard to asymptotic
techniques. For example, in the restricted theory of shallow shells, the usefulness of
working with just two coupled equations has been long recognized.

In the general theory of shells, it has been known that the equations for shells of
revolution [1, 2], general cylindrical shells [1], and catenoidal and helicoidal shells {3]
can be reduced to two coupled fourth-order equations. These reductions employ various
pairs of dependent variables, but a reduction which works with one pair of unknowns
will not necessarily go through with another. In the present paper we show that the
method of reduction developed in [3] for catenoidal and helicoidal shells may be general-
ized to any shell with an analytic, minimal midsurface, excluding a plane. The dependent
variables involved are a stress function and the rotation of the midsurface displacement
field about the normal. This is in contrast to the reductions in [1, 2] which use either the
normal components of the midsurface displacement and stress function vectors or the
linear invariants of the stress resultant and bending strain tensor.

2. The governing equations. In [3] it was shown that the linear Sanders-Koiter
equations, for an elastically isotropic shell of constant thickness with a minimal mid-
surface, could be reduced to the form

S = L(F) — DW(T), 2.1)
T = L(G) + AW(S), (2.2)
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W(F) + DL(T) + D(1 — u)(V* — 2K)G = 0, 2.3)
W(G) — AL(S) — A1 + »)(V*® — 2K)F = 0. (2.4)
In these equations 4, D, u, and v are elastic constants and
L(F) = &"(K'0.Fig)1y (2.5)
W(F) = —(K™'0"F o) (2.6)
V*F) = a*F\as @10

where €7 is the contravariant midsurface permutation tensor, K is the (negative)

Gaussian curvature, b, = a°'b,. , b** = a*’b,’, a®"a,s = &, the Kronecker delta,
and a,s and b,s are, respectively, the covariant metric and curvature tensors of the
midsurface. A vertical bar, followed by an «, denotes covariant differentiation with
respect to the surface coordinate «”. The unknowns F, G, S, and T represent, respec-
tively, a stress function, the rotation of the midsurface displacement about the mid-
surface normal, and the linear invariants of the stress resultant and bending strain
tensors.

The derivation of (2.1)-(2.4) from the Sanders—Koiter equations is exact, but does
require the use of (weakly) coupled stress-strain relations. The relative differences
between the stress and displacement fields associated with these relations and those
corresponding to the conventional uncoupled stress-strain relations have been shown to
be negligible in a mean-square sense, being of the same order of magnitude as the errors
inherent in the Sanders-Koiter theory itself [4].

Our aim in the present paper is to show that (2.1)-(2.4) can be reduced to two
coupled fourth-order equations for F and @ for all minimal midsurfaces. To this end it is
convenient, initially, to work with the asymptotic coordinates v = %' and v = 4’
chosen so that the covariant components of the metric and curvature tensors take the

form
[@s] =P’[1 OJ, [bos] = [" 1] @.8)
0 1 1 0

where P = (—K)™'* > 0. The function P is not completely arbitrary, but must be such
that the Codazzi and Gauss integrability conditions of surface theory are satisfied.
It follows from (2.8) that the former equations are satisfied identically, while the latter
takes the form [5, Eq. (3-7)]

(P'P,), + (P7'P,), = P?, (2.9)

where a subscript denotes partial differentiation. The operators L, W, and V? can be
expressed as

L(F) = P’[(P’F.). — (P°F.).] (2.10)
W(F) = P*[(PF,). + (P°F.),] (2.11)
VF) = P%F,, + F..). (2.12)

It is also advantageous to introduce new dependent variables and operators as
follows:
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(¢,7,0,7) =PF,G,8,7T), (2.13)
£(¢) = PL(P™'¢)
= ¢u — ¢oo — (Puu — P,.)P7'9, (2.14)
W(¢) = PW(P'¢)
= 2(¢u, — P..P7'9), (2.15)
D(¢) = PV*(P'¢) — 2K¢
= V% — 2P (P, + P.g.) + (V'P)P's. (2.16)

In deriving (2.16), we have made use of (2.9).
The governing shell equations (2.1)-(2.4) can now be expressed as

o = &(¢) — DW(7), (2.17)
T = £(y) + AW(0), (2.18)
W) + D&(r) + D1 — wD() = 0, (2.19)
W(y) — AL(e) — A(1 4+ »)D(p) = 0. (2.20)

3. The condition of commutability for reduction. Applying £ to (2.18), inserting
the resulting right-hand side into (2.19), and solving (2.20) for £(c), we obtain

W(9) + DL() + W) — AUl + WD) + (1 — w)D()]
+ DA(LW — Wwe)(o) = 0. 3.1)
Likewise, from (2.17), (2.19), and (2.20), we obtain
Wiy) — Al€%9) + W (@) + Dl — pyWD() + (1 + »)D@)]
+ AD(EeW — WeL)(r) = 0. 3.2)
These are the two coupled fourth-order equations we desire, provided
LW — we = 0. (3.3)
To express (3.3) in a more explicit yet compact form, define the complex-valued operator
4M = £ 4+ W, (3.4)
and note that
16MM = £2 + W + i(WL — LW). (3.5)

Hence £ and W commute if and only if MW is a real operator. But in terms of the
complex variable

w=u -+ W, (3.6)
(2.14) and (2.15) combine, as indicated by (3.4), to yield
M = (8°/9w*) — (Psa/P). (3.7




Since P is real, we have
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] wa

w0 = (35 ~ 5 (e - )

Twwes — P_I(wad'g,,; + Pﬁﬁaww)

- 2(P_1wa)ﬁal'a + [P—zPﬂ)ﬁwa - (P_]wa)ﬁj]o-' (3'8)

i

All terms except those underlined are obviously real. As ¢ is an arbitrary real function
of w and W, o5 will, in general, have a non-zero imaginary part. Hence, the first under-
lined term in (3.8) is guaranteed to be real if and only if

P_lew = f(w), (3.9)

where f is an analytic function of w. Condition (3.9) also eliminates the second underlined
term in (3.8).

4. Identical satisfaction of the commutability condition. We shall now show that
(3.9) is satisfied identically for all analytic, minimal midsurfaces.
It is well known that such surfaces can be expressed in the form [5, p. 188]

z=Q f (1 = () ds, (4.1)
v =& [+ ) dt, (4.2)
2 =a [ 2t00) dt, «.3)

where g is an analytic function of the complex variable {, and ® denotes ‘“the real part of.”
The first and second fundamental forms of the surfaces defined by (4.1)-(4.3) work out
to be

I =401 + £§)’gg dg df, (44
IT = 2(gd¢” + §di). (4.5)

The corresponding first and second fundamental forms which follow from (2.8) and
(3.6) are

I = P? dw dw, (4.6)
II = —%i(dw’ — dw’). 4.7)
These forms can be brought into agreement by setting
P=Q+¢Hn™, (4.8)
wy = 2 g"* exp (in/4). 4.9

1/2

(The complex ¢-plane is assumed to be appropriately cut so that g'/* is analytic there.)

Since (4.4) and (4.5) were derived from (4.1)-(4.3), it must follow that the Gauss
integrability condition (2.9), when expressed in terms of g and ¢ via (3.6), (4.8), and
(4.9), is satisfied identically. It remains only to verify (3.9).
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By straightforward calculation we have
1d°P 1 d

1 4j1d - 1/4}
Paw' = U+ 99w &5 {w; gy [+ £

_ _—i{i [LJF 1+ If)g’]}
4(1 + g.g'.)g3/4 dg' gl/4 4g5/4

= 64193 (59" — 499", (4.10)

which, via (4.9), is an analytic function of w, excluding any isolated zeros of g.
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