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ON THE STABILITY OF SWIRLING FLOW IN MAGNETOGASDYNAMICS*

By B. S. DANDAPAT anp A. S. GUPTA
(Indian Institute of Technology, Kharagpur)

1. Introduction. The stability of the steady circular nondissipative flow of an
incompressible fluid betwen two concentric cylinders was first studied by Rayleigh [1]
who assumed the disturbances to be axisymmetric. He showed that this problem has
a remarkable analogy with that of the stability of a density stratified fluid at rest under
gravity. Michael [2] extended this problem to the case of a perfectly conducting liquid
with an electric current distribution parallel to the axis of cylinders and found that
Rayleigh’s analogy holds in a slightly modified form. Using this analogy, Howard
and Gupta [3] investigated the stability of nondissipative swirling flow of an incom-
pressible fluid between two concentric cylinders with respect to axisymmetric dis-
turbances. They found that stability is ensured if a Richardson number based on the
swirl velocity and the shear in the axial flow exceeds } everywhere. Recently Howard
[4] using a modification of the analysis due to Chimonas [5] on compressible stratified
shear flow, derived a Richardson-number theorem for the linear stability to axisym-
metric perturbations of compressible nondissipative swirling flow.

The present note is an extension of Howard’s [4] problem to the case of a perfectly
conducting fluid permeated by an axial distribution of electric current. It is important
to note that in a compressible swirling flow, the swirl velocity distribution V(r) not
only plays a role similar to that in incompressible flows, but also gives rise, through
the centrifugal acceleration V*/r, to a radial effective gravity which, combined with
a radial density stratification, affects the perturbations significantly.

We discuss the axisymmetric stability of pure axial flow of a compressible perfectly
conducting fluid between two concentric cylinders permeated by a uniform axial mag-
netic field. We show that the complex wave speed for any unstable wave lies in a semi-
circle in the upper half plane, having the same range of axial velocity as the diameter.

2. Compressible swirling flow with an axial current. Consider the steady swirling
flow of an inviscid, compressible and perfectly conducting fluid between two concentric
cylinders of radii ¢ and b (a < b), the flow being subjected to a volume distribution
of current parallel to the axis of the cylinders. Using cylindrical coordinates (r, 6, 2),
we take the basic velocity and the magnetic field as [0, V(r), W(r)] and [0, H,(r), 0].
The radial momentum equation in the undisturbed state gives
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where po(r) and p,(r) denote the basic pressure and density distribution and a prime
denotes derivative with respect to r. Let a perturbed state of this flow be
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q=(u:V+v’W+w); p* = po + p,
H = (hr:H0+h0:hx)7 p* = po + p. (2)

Since the gas is in thermodynamic equilibrium, the relation p* = f(p* S) must hold,
S being the specific entropy. We can, of course, avoid the explicit dependence on S
by using the equation of entropy

dS/dt = 0, 3)
all dissipative phenomena in the gas being negligible. In fact, using (3), one finds
dp*/dt = (3p*/3p*)s(dp*/dt) = —a’p*V -q, (4)
where a(p*, 8S) is the adiabatic sound speed and use is made of the equation of continuity
(dp*/dt) + p*V-q = 0. 5
The magnetic induction equation is
dH
51 T @VH = #H V) - HV-q (6)
along with the solenoidal condition
V-H=0. @)

As is usual in linear stability problems, we now look for solutions for which the
z — t dependence of the perturbation quantities in (2) is taken in the form exp [ia(z — ct)].
The three linearized components of the momentum equation now give

polic(W — cu — 2Vu/r] + pHohe/2mr — pV?/r = —[p + p.heHo/4x]’, ®)

polia(W — ¢ + (rV)'u/r] = 0, 9
polia(W — c)w + uW'] = —ia[p + u.heHo/4x]. (10)

Eqgs. (4) and (5) give
(W — o)p + ups’ + aopol(ru) /r + iocw] = 0, (11)
ia(W — ¢)p + upo’ + po[(rvt)’ /r + iaw] = 0. 12)

Further, (6) gives
h, = h, =0,

wa(W — c)hy + w(H,' — Ho/r) + H[(rw)'/r + taw] = 0, (13)

Eq. (7) being identically satisfied.
Elimination of p, k4 , v and p from (8), (9), (10), (12) and (13) gives

W = &) L [potialW — cw + ui"}]

_ po[2V(V'r+ V) _ e — c)z]u n

_ [uH v

2‘5,0 [(Hopou/po + u(Ho/r — H,"]

by V] fup 4 o fr + piu] (14)
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Again, elimination of p and &, from (10), (11) and (13) yields

iaw[’“—c‘f-l— + Poao - PO(W - 0)2]
™
= [BE 1 o — oW — i — [ 4 2] @
We now eliminate w from (14) and (15) and set
u=F-Qr)-W — (16)

in the resulting equation where

L (W‘— )/(0+V,, (17)

with V, = (u.H,/4wp,)"”* representing Alfvén velocity along the circular magnetic
lines of force. The equation for F now becomes

pol) (ao + Va )(W _
i e TS | 4 w0 - -y - e =0, a9

where
_ H02>, _ _]; 2172\/
‘l’_¢ 41rp< ’ ¢—Ta(rv)7
Ny = B ot (19)

Since u vanishes on the walls, the boundary conditions for F are
F=0 at r=a and r =b. (20)

Eq. (18) with the boundary conditions (20) is similar in structure to the corresponding
equations for F derived by Howard [4] for the non-magnetic case, the only difference
being that a,’ , ¢ and N” in Eq. (21) of [4] are replaced by a,’ + V.? ¢ and N,° re-
spectively, where N? is the square of the adiabatic Brunt-Viisils frequency. The expres-
sion for ¢ is Michael’s discriminant [2], while N,* may be recognized as the square
of the adiabatic Brunt-Viisild frequency modified by the presence of the circular
magnetic field.

Following Howard [4], we therefore conclude that if ¢ + N* > 0, then the complex
wave speed of any unstable mode must lie in a semicircle in the upper half-plane which
has the range of W(r) as diameter. Further, we may define a local Richardson number

= (¢ + N4°)/W’® such that the flow will be stable with respect to axisymmetric
perturbations if Ri > % everywhere in the flow. It may be seen from (19) that, unlike
the stability of the corresponding incompressible MHD swirling flow studied by Howard
and Gupta [3], the stability characteristics in the present problem are affected by a
circular magnetic field even when H,(r) is proportional to r.

3. Compressible axial flow with an axial magnetic field. Consider nondissipative
axial flow of a compressible conducting fluid between two concentric cylinders in the
presence of a uniform axial magnetic field. Thus, in cylindrical coordinates, the basic
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velocity and magnetic field are given by [0, 0, W(r)] and [0, 0, H,] respectively. We
take the perturbed state as

qQ= (o W+ w), p* =P+ p,
H = (hr yhﬂ ,HO + hz); P* = Po + P, (21)

where the subscript zero refers to the unperturbed state. The governing equations are
(4)-(7) along with the equations of momentum. All perturbation quantities are assumed
to be axisymmetric. If we proceed as in Sec. 2, the linearized equations of momentum
are given by

poia(W — cyu — pHoiah, /4w = —(p + p.Hoh./4x)', (22)
polW — ¢ — u Hohy/4m = 0, (23)
pota(W — c)w + puW’' — u Hylah,/4nr = —ia(p + p.Hoh,/4w). (24).
The components of (6) give
(W — ¢)h, — Hou = 0, (25)
(W — ¢)hy — Hpw = 0, (26)
ia(W — ¢)h, — h,W' — iaHw + H,[(rw)’/r + tow] = 0. 27)
Further, (4) and (5) yield
ta(W — &)p + ao’po[(rw)’ /r + taw] = 0, (28)
(W — ¢)p + upo’ + pol(rw)’/r + taw] = 0. (29)
Again V-H = 0 leads to
(rh,)'/r + iah, = 0. (30)
Eqgs. (23) and (26) give
v="hy=0. (31

Eliminating all the variables except u from (22), (24), (25), (27), (28) and (30) and
putting F(r) = u/(W — ¢) in the resulting equation, we obtain

4 [p{ﬁ £ V0T ]+ nllOF — o — VR =0, @

where
Va= (#;H02/4""Po)1/2 (33)

represents the Alfvén velocity.
For an incompressible homogeneous fluid, p, = constant and a, — « so that (32)
reduces to

L1 — o — VY - &I — 0 = VAF = 0, (34)

as deduced by Howard and Gupta [3]. Multiplying (32) by rF, integrating between
a and b, and using F = 0 at r = a and b, we obtain
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f "W — Y@ dr =T, (35)

where
4 2
_ Polo T DgFI 2 2
Y(T) = a02 — (W — c)zl + o por IFl ’

b 2 4 b
T =f ,,o[lao"f’ W —c[ V:]r ID,F|* dr+a’f o V42 |FJ? dr,
d

f— (W =)

1

D, = ar T (36)
Eq. (385) is of the same form as the one deduced by Howard [6] since both Y (r) and
T are non-negative. We therefore conclude that the complex wave speed ¢ for any
unstable mode must lie in the semicircle in the upper half plane which has the range
of W(r) for diameter. It may be noticed that Eq. (29) involving the density perturba-
tion p is not needed for finding the stability characteristics. This is due to the fact
that there is no basic swirl velocity and therefore the mechanism of the centrifugal
acceleration playing the role of a radial effective gravity is absent in this stability analysis.
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