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1. Introduction. In a previous work [1] we considered a nonlinear heat conduction
problem and proved the continuous dependence of its solution on the heat capacity
and thermal conductivity of the medium. The results we obtained there can be sum-
marized as follows: the L2 norm of the difference between temperatures corresponding
to the same initial and boundary data and to different thermal coefficients tends to
zero together with the L1 norms of the differences between the respective coefficients.

However, considerable drawbacks arise in applying the foregoing estimate to some
special practical cases. Indeed, the condition that the L1 norms of the differences between
thermal coefficients are small could be hardly verified when sharp variations in thermal
properties occur over a narrow temperature range: as a matter of fact, the evaluation
of those norms can be performed only with large inaccuracy, owing to the difficulties
involved in measuring heat capacity and thermal conductivity in such temperature
intervals. Moreover, the estimate given in [1] is influenced quite critically by the max-
imum value of the heat capacities and it becomes practically useless when high peaks
in specific heat occur.

On the other hand, this is the actual experimental situation encountered, for instance,
when materials dealt with undergo a change in physical structure and this change does
not take place at a certain temperature but over a small temperature interval: this is
the typical behavior of impure substances in their phase changes.

In order to provide a meaningful stability theorem for these special cases, a more
sophisticated approach is needed, starting from a new weak formulation of the heat
conduction problem considered, which will be introduced in the next section.

In Sec. 3 the main result is stated and discussed in view of applications. As a matter
of fact, on the basis of our stability theorem thermal fields in impure substances under-
going change of phase can be computed using approximate thermal coefficients, evaluated
by means of a very simple experimental procedure. Applications to the technique of
freezing and thawing of foodstuffs, together with numerical and experimental results,
were carried out in collaboration with the Laboratorio per la Tecnica del Freddo in
Padova [7],

The stability theorem is then proved in Sec. 4 and 5 by means of techniques based
upon the concept of weak solution (classical tools are unsuitable for our purposes, as
pointed out in [1]). Some procedures, which appeared in [2] and were then developed
in [3] and [4] will also be applied.

* Received July 23, 1973. Work performed under the auspices of the Italian C.N.11. (Gruppo
Nazionale per la Fisica Matematica).
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2. A weak formulation of nonlinear heat conduction problems. Let us consider
the following heat conduction problem during the time interval (0, T) in a medium
occupying a n-dimensional region B, assuming heat capacity c and thermal conductivity
k to be known functions of temperature:

c{u){du/dt) = div [k(u) grad w]1 in D = B X (0, T), (2.1)

u(x, 0) = h(x), x G B, (2.2)

k(u)(du/dn) = ip(x, t) (x, t) G S = SB X (0, T); (2.3)

here u represents the temperature at each point (x, t) £ D, h(x) is the initial temperature
distribution prescribed on B, and <p(x, t) is the given specific heat flux entering B per
unit time (3/dn = derivative in the direction of the outer normal to dB).

Throughout the paper we shall suppose that c(u), k(u) are positive, bounded and
locally integrable functions:

0 < a < c(u) < P < + 00, (2.4)

0 < a' < k(u) < p' < + . (2.5)

Moreover, we shall assume that h and <-p are bounded measurable functions and that
dB has local representation of the form xt = xj(x1 , • • • , z,'-i , xj + i , • • • , xn) for some j
of class C2.

Let us define

a(u) = [ c(i?) dy, (2.6)
»Uo

b(u) = f k(v) dy, (2.7)
^u0

where u0 is an arbitrarily fixed constant.
Since b'(u) = k(u) > a' > 0, the function b(u) has an inverse

u = 2(6). (2.8)

Thus, we can define

A (6) = 0(2(6)). (2.9)

Consequently, the problem (2.1)-(2.3) can be rewritten as follows:

dA(b)/dt = V26 in D, (2.10)

b[u(x, 0)] = b[h(x)] in B, (2.11)

db/dn = <p{x, t) on S. (2.12)

In order to introduce a weak formulation of this problem, let us define as test junctions
for problem (2.10)-(2.12) any smooth2 F(x, t) in D, such that:

dF/dn = 0 on S, (2.13)

F(x, T) = 0 for x E B. (2.14)
1 Throughout the operators div, grad, V2( V2 = div grad) are meant to act on space variables only.
2 More precisely suppose F,, grad F, SJ*F exist and are continuous in D.
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Multiplying both sides of (2.10) by F, integrating over D and performing elementary
calculations gives

JJ (b\Z2F + A(b) jf)dxdt = -f a(h(x))F(x, 0) dx - J F<p dS, (2.15)
where conditions (2.11), (2.12), (2.13), (2.14) were taken into account.

We shall define a weak solution of (2.1)-(2.3) as a bounded measurable function
u(x, t) such that b(u(x, t)) satisfies (2.15) for any test function F.

In the spirit of the physical problems sketched in Sec. 1, we shall suppose that c has
peaks (and, correspondingly, k presents high rates of variation) in given temperature
intervals {U *, U**), I = 1, 2, • • • , m; without loss of generality we shall suppose,
from now on, m = 1 and drop the subscript I; thus, besides the constants a, /3, a', fi'
defined in (2.4), (2.5), we introduce bounds a0, , a0', /30' for c and k when the tempera-
ture does not belong to (JJ*, [/**):

0 < «o < c(v) < ft, < +ro ^ ^ ^ jj(2.16)

0 < < kto) < /V < + » (2.16')
In order to get a priori bounds on weak solutions to problem (2.10)-(2.12), consider

the following problem:

dA(b)/dt = | (dh/dt) = V25 in D, (2.17)

h(x, 0) = f k{t]) di) in
(2.18)

dh/dn = $ on >S, (2.19)
where

h0 = max {U**, ess sup h(x)}, (2.20)

$ = ess sup <p(x, t), (2.21)

and the coefficient c/k in (2.17) must be evaluated for the temperature v = e(b).
Let us introduce sequences {cm), {km\ of C" functions satisfying (2.16), (2.16') and

such that the corresponding sequences {am}, {bm} are uniformly convergent on bounded
sets to a and b respectively; then consider the solutions {hm} of the corresponding family
of problems of type (2.17)-(2.19). From the assumptions made on coefficients, boundary
and data, it follows (see [9], p. 491) that bm(x, t) exist and are unique. Moreover,

»U**/il/"

> / km(ri) di1,
"Uo

and therefore vm > U** and cm , km are evaluated outside (U*, U**); thus, from
(2.16)—(2.16'),

ao /fio cm/km < /30 /a0 .

At this point, when we recall also the assumption on dB, an a-priori estimate for linear
equations with linear initial-boundary conditions of the form (2.18), (2.19) can be
deduced from the maximum principle (see, e.g., Theorem 2.3 of [5], p. 16) yielding
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Vm(x, t) < V",

V" being a computable constant depending on a0 , /30 , a0', 0O', h0 , $ and dB but not
on (a and) /3.

Following the techniques of [4], it is possible to prove that problem (2.17)-(2.19)
has a weak solution 5 and that the function v = z(b) is the pointwise limit of a subse-
quence {«„.} of {«„,}; consequently

v < V". (2.22)

Let us now compare b and 6; from (2.15) we have immediately

ffD {(6 ~ b)v*F + [A(6) ~ A(6)] a?} dx dt

— — [ [^(/io) _ a(h)]F(x, 0) dx — [ ($ — <p)F(x, t) dS. (2.23)
J B J S

Select now a sequence {p, } of functions from C" converging in the L2 norm to the
function

p(-X' = A(5) - A(6) ' h * b' (2'24)

= ot'/p, h = b,
and possessing the same bounds as p(x, t), i.e. a'/fi < p < 13'/a; next, choose test functions
such that, besides (2.13), (2.14)

F,U) + P, V2 = Q(x, t) > 0 in D, (2.25)

where Q is an arbitrary Holder-continuous function.
The maximum principle yields

Fu\x, t) < 0 in D. (2.26)

Indeed, the function V(,)(x, t) = F1'"(x, T — t) cannot possess any maximum in D
since p, V2 Fc" — (dVu)/dt) > 0, nor on S because of (2.13) and the Vyborny-Friedman
theorem [6], Therefore, the maximum of F('' is assumed for t = 0: then (2.26) follows
immediately from (2.14).

Thus, the right-hand side of (2.23) is positive; i.e.:

//„ f + "T7'F"']dx dt

- J! [A(h) - A(b)](Pi - P)V2FU) dx dt > 0.

It is possible to show that the second term tends to zero as j tends to infinity by applying
the technique of Lemma 3 below and recalling that A (b) and A (b) are bounded because
of the definition of weak solution. Therefore

II [A(5) — A(6)]Q(x, t) dx dt > 0.
But since Q(x, t) is an arbitrary positive function of (x, t) in D, it follows that
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A(5) > A(6), a.e. in D;

that is,

v(x, t) > u{x, t), a.e. in D. (2.27)

Finally, recalling (2.22), we have

u(x, t) < V", a.e. in D. (2.28)

Then, applying the same technique, a lower bound V' for u can be found; setting

V = max {|F'| , \V"\\ (2.29)

we conclude that

|u{x, /)| < V a.e. in D. (2.30)

For sake of simplicity, we shall choose the constant w0 of definitions (2.6) and (2.7)
equal to V'.

3. The stability theorem. Let us denote by ux{x, t), u2(x, t) the temperature dis-
tributions corresponding to initial and boundary conditions (2.2)-(2.3) and to tem-
perature-dependent thermal coefficients , /c, and c2 , fc2 respectively, each of them
satisfying (2.4), (2.5), (2.16). We define functions a, , 6, , z{ , A, , i = 1, 2, according
to formulae (2.6)-(2.9). Starting from (2.15), it is easily found that

fj |[A1(&I) - AM] ^ + (b, - &2)V2f| dx dt

= — f {a}[h(x)] — a2[h(x)]\F(x, 0) dx. (3.1)
J B

Subtracting Al(b2){dF/dt) dx dt on both sides and setting

" " AM I IM for * <* M

= a'/P for bi = b2 ,

we get

/jf [A^b.) - A,(b2)]{~- + 8V2f) dx dt

= - JJ [A^b,) - A2(b2)] j^-dxdt- J [ai(h) - a2(h)]F(x, 0) dx. (3.3)

Remark that

a'/P < s(x, t) < P'/a in D. (3.4)

In order to state the stability theorem let us introduce some notation. First, define
the following subsets of D and B.3

1 Obviously these subsets are defined apart from sets of zero measure.
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Dil) = {(x, t) : u2(x, t) < U*\,

Dm = {{x, t) :U* < u2(x, t) < U**}, (3.5)

D<3) = {(x, t) : U** < u2(x, t)\;

Bw = {x : h(x) < U*\,

5(2) = {z : U* < h{x) < U**\, (3.6)
Bw = {x : U** < h(x)}]

and denote by juU), ju0<!> the Lebesgue measures of DU), 7?u> in Rn+I and Rn respectively
(I = 1, 2, 3) and set

3 3Em v (Z)M > Mo = 2-f Mo
i = 1 i=l

Next, set

A'c = f \ci(ri) — c2(t])\ d-q, (3.7)
Jv'

A"c = f \cL(rj) — C2(r?) | dr\, (3.8)
Ju**

Afc = [ lUr,) - /c2(t7)| d„, (3.9)
JV'

X; = f Ci(ri) di), i = 1,2, (3.10)
J (/♦

A = max (Xx , \2), (3.10')

AX = |\j - x2|. (3.11)

We shall prove the following
Theorem. If u^x, t), u2(x, t) are weak solutions of problem (2.1)-(2.3) with respective

thermal coefficients Ci , kx and c2 , k2 satisfying (2.4), (2.5), (2.16), then

||«1 — u2\\lhd) < «(Afc, A'c, A"c, AX, ju<2>, Mo<2); a, <*', /3', a0 , /30 , A, F, jli0 , T), (3.12)

where e zs a known function of its arguments, tending to zero when Ak, A'c, A"c, AX, /*<2>, /j0(2)
all tend to zero.

Bearing in mind the practical applications we have outlined in Sec. 1, by Ci and k,
we shall mean the actual thermal coefficients which can be measured only with large
innacuracy in the interval (JJ*, U**), whereas c2 and fc2 will denote the functions used
for the computation of the approximate thermal field u2(x, t). Inequality (3.12) furnishes
an estimate of the error brought about by this procedure.

The main features of this estimate are summarized in the following remarks.
Remark 1. The function t in (3.12) depends only on quantities which are easily

evaluated by means of either experimental measurements or computation. On the
contrary, it is essential to note that the constant /3 and the shape of the curves Ci , kl vs.
temperature in the interval (£/*, U**) do not enter into e: indeed, their appearance
in (3.12) would make it meaningless because of the large value expected for /3 and the
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difficulties arising in doing local measurements of c, , /c, in the quoted temperature
interval.

Remark 2. The estimate (3.12) provides a very useful rule for selecting functions
c2, k2: it is sufficient for c2, k2 to approximate closely Ci , fci where they are easily measur-
able, i.e. outside (U*, U**), while in this interval the conductivity can be approximated
with a linear interpolation and the heat capacity in a rather arbitrary way (e.g. a bell-
shaped, or even a simpler curve) provided that the integral X2 = Jr/*^** c2(r?) dri is nearly
equal to the actual total change in enthalpy (the "latent heat" for the phase change)
across the interval ([/*, [/**); this quantity is easily measurable with a single calorimetric
experiment.

Remark 3. While all other quantities in (3.12) are known or estimated a priori,
txl2) must be evaluated a posteriori. Nevertheless, this is not a significant drawback:
once the approximate thermal field u2(x, t) has been computed, the measure of D{2°
can be calculated directly.

Moreover, if an a-priori lower bound on grad u2(x, t) in D(2) can be established
(e.g. by means of the maximum principle), ju<2) is also estimated a-priori.

In this connection it should be emphasized that in practical processes (e.g. freezing
of foodstuffs) high values of the thermal gradient are required in the phase-change zone,
which causes a significant narrowing of the region D(2'.

4. Preliminary lemmas. Let us introduce the following sequences of functions
belonging to C" (D):

{sm}, 0 < a'/p < sm < P'/ct, lim ||sm - s|| = 04 (4.1)

{\M, lllMI ̂  IIM1 - ^zll , lim \\tm - (it! - w2)|| = 0 (4.2)
and consider the solutions of the following parabolic problems (to. = 1, 2, • • •):

(dl'm/dt) + Sm(x, t) V2 Fm = ypm(x, t)-sm(x, t); (x, t) £ D, (4.3)

Fm(x, T) = 0 xGB, (4.4)
(d/dn)Fn(x, t) = 0, (x, t) £ S. (4.5)

Since the Fm satisfy (2.13), (2.14), they can be used as test functions in (3.3), which can
be rewritten as follows:

[Aiib,) - A1(b2)]smim dx dt + [A1(61) - Ax(b2)] -(s - sm)V2Fm dx dt

= -ff [AM - A2(b2)] —fdxdt- f [ai(h) - a2(h)]Fm(x, 0) dx. (4.6)
Let us prove some lemmas in order to estimate ||Fm(x, 0)||t»<js) , ||3Fm/3i|| , and the
second term of the right-hand side of (4.6).

Lemma 1. There exists a constant N (given by (4.13)) such that:

WdFJdtW < JV ||ut — u,|| , (4.7)
for each to.

Proof. From (4.3) we have

\\dFJdt\\ < l|s. V2Fm|| + H^sJI , (4.8)
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where, by virtue of (3.1), (3.2):

lllM.ll < (07«) Ik - Wall • (4.9)
Concerning the first term in the right-hand side of (4.8), one can write

Ik V2 FmII < (0'/a)1/2\\ sm1/2 V2 Fm|| , (4.10)

and estimate js„1/2 V2 Fra|| by multiplying both sides of (4.3) by V2 Fm and integrating
over D:

||sm1/2V2Fm||2 = JJd *msmV2Fm dx dt - ffD V2Fm dx dt. (4.11)

It is easily shown that

IL If v'F- tdx dt - IL6rad F-grad 'itd*dt
= (9/St) (grad Fmf dx dt = | £ [grad Fm(x, 0)]2 dx.

Thus, returning to (4.11) and applying the Schwarz inequality to the first integral,
one has:

\K1/2V2Fm\\2 < ||^„smI/2|| ||sm1/2V2 Fm\\ - \ JB [grad Fm(x, 0)]2 dx.

Therefore,

||s„I/2 V2 F.|| < {V'/a)U2 ||Ul - «,|| . (4.12)

Summing up (4.8), (4.9), (4.10), (4.12), we achieve the proof of (4.7) with

N = 2 —■ (4.13)
a

Lemma 2. The L2 norms of the functions Fm(x, 0) satisfy the following inequality:

IIFm(x, 0)|U.(B) < VT N Uttx - u21| . (4.14)
Proof. Inequality (4.14) follows immediately from Lemma 1 and the identity

dFm(x, t)„(x, 0) = - f
Jo dr dT-

Lemma 3. The second term on the left-hand side of (4.6) tends to zero when m tends
to infinity, that is:

lim ff [^i(&i) — -41(b2)](s — sm)V2Fm dx dt = 0 (4.15)
m—♦ oo JJd

Proof. The term in square brackets is bounded in the maximum norm:

[4,(6.) - 4.(6,)] < 4/SF. (4.16)
Therefore,

| JjT [AM - AM(s - s,)VX dx dt < 4/3V fj 15 ^ |sm1/2V2Fm\ dx dt„ 1/2 I m
^ rr,
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Since sm~1/2 < (j3'/a)1/'2, taking into account (4.12) the Schwartz inequality yields:

|//c [AM - - sm)V2Fm dx dt < 8VY/2{^j
t 1/2

lis - sm

Because of (4.1), the proof of Lemma 3 is completed.
Now let m tend to infinity in (4.6). Recall definitions (4.1), (4.2) and apply the

results of Lemmas 1, 2 and 3 to obtain:

JJ (&i — b2)(ul — u2) dx dt

< {N VT IkW - a2(h)11 + N p,(62) - A2(b2)\|} • ||Wl - «2||. (4.17)
The following section contains the analysis of (4.17) necessary to prove the theorem.

5. Proof of the theorem. Put

/j = // (mj — u2) / k^n) dr] dx dt, (5.1)
J JD * Uj

h — // («i — w2) / [/ci(i) — k2(i))] di) dx dt, (5.2)
<J JD

Ji = \\ai(h) - oa(ft)||, (5.3)

(5.4)J2 = f [Ci(i?) — c2(tj)] dr]
I I Ju0

/' 1 »i (6«)
Ci(v) dr)

a(6«)
(5.5)

From (4.17) we get:

h + /, < N(VT Ji + J2 + J,) |k - u21| . (5.6)
A. Analysis of It . Since /cx > a' one has

Ii > a' JJ (wi ~ W2)2 dx dt = a' ||ttx — m2||2. (5.7)

B. Analysis of I2. One has immediately from the Schwartz inequality and definition
(3.9)

|/2| < Ak JJ |Ui — w2| dx dt < Ak(y.0T)1/2 []«! — w2[| (5.8)

C. Analysis of J1 . From definitions (3.6) it follows that

dxJ12 < [ ( (Ci — c2) dt)
•'£<»> \Juo

+ / \ / (Ci - c2) dr) + / (Ci - c2) dr)
«/*<»> iKtto \Ju*

r (\ fu* I I ru** I ch I2
+ / \ / (Ci - c2) di)\ + \ (ci - Ci) dr) + / (cx - c2) dr? f dx. (5.9)

Jfl(s) l|Jtt0 I \Ju* J

2

dx
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Recalling (3.7), (3.8), (3.10); (3.11), we obtain:

JI2 < Mo(i,[A'c]2 + mo(2,[A'c + 2A]2 + Mo(3,[A'c + AX + A"c]2.

Thus we can write

Ji ^ ei(A'c, A"c, AX, ; A, /x0) (5.10)

where ey is a known function tending to zero when A'c, A"c, AX, n„'2> all tend to zero.

J,2 =

+

D. Analysis of J2 . From definitions (3.5) we get

/ / / (°i ~~ ci) dv dx dt
|JUo

/ / i / (Ci - c2) dr) + / (ci — c2) d-q f dx dt
{J Uo •/[/. J

[[ {[ (Ci — c2) dv + f (Ci — c2) dr] + [ (Cl — c2) dx dt.
JJni') U., •<[/« ^f/»* J

+

The same technique which led us from (5.9) to (5.10) now yields

t/2 < e2(A'c, A"c, n<2), AX; A, /u0T) (5.11)

where e2 is a known function tending to zero when A'c, A"c, ^(2), AX all tend to zero.
E. Analysis oj . First, remark that

sup |«j(f) — z2(£)| < A sup |6i(w2) - b2(M2)| < A- Ak. (5.12)
l{l<2/J'r a luai<y

Consequently,
I r*Zi (62) f /»Ua + Afc/a ' /»u2

/ c^tj) di) <ma Ciiv) dq, / c^rj) dij
I ̂  z a (6 a) Wu2 ^ua-AA:/a'

(5.13)

Let us look for a bound on
/*ua + Afc/artUj t• ak/a

/ Ci(i7) dr)
I I

Define the following subsets of D:

3)(1> = {(a;, t) :u2(x, t) < U* — A/c/a'},

3l><2> = {(x, t) :U* - Afc/a' < 0 < t7**!,

£><3) = {(x, t) :m2(x, 0 > £/**},

whose respective measures will be indicated by jEa>, m<2), m<3>. Then, recalling that in £><u
and SD<3) a0 < c^ij) < ft, , by virtue of (3.5)

I pu 2 + A k/a ' 2 I I

/ drj
\\Ju2 II

< Mn>^02(^7)2 + |/J C,(u) dij + £ + Ak/a Cl(u) dx dt + M<3>/3o2(^)

< 2MoT/3o2(^)2 + M<2>[^ /30 + X,]' • (5.14)
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Since a similar result holds for
f Ua

/ Ciiv) dt]
I I Jua — &k/a '

and the difference p'2) — n'2> tends to zero-with Ale, we can conclude that

J3 < €3(Ak, //2); a.', /30 , A, noT) (5.15)

where is a computable function tending to zero when Ak and /i<2! both tend to zero.
Summing up (5.7), (5.8), (5.10), (5.11) and (5.15) and recalling the definition (4.13)
of N, (5.6) furnishes the following inequality:

a' Ik - u,|| < AfcWT)1/2 + 2 ^ WT «! + €2 + 63), (5.16)

from which the final estimate (3.12) follows immediately.
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