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Notes-

convergence IN ITERATIVE DESIGN*

By

W. R. SPILLERS and S. AL-BANNA
Columbia University

Abstract. Earlier results for the monotone convergence of iterative design for a
simple model of the truss problem are generalized for the case in which the objective
function is a homogeneous, convex function.

Introduction. This paper deals with the question of the convergence of an iterative
structural design algorithm to an optimal design. Since there is an abundance of literature
available to establish the state of the art in structural design (e.g. [1]), only a brief
attempt will be made here to relate the present work to the literature.

Optimal structural design as discussed here is a mathematical programming problem
and has received considerable attention as such. In general, algorithmic difficulties have
impeded the automation of structural design, and a rather curious situation has developed
in which it is possible to deal formally only with structures of modest size while the
designer deals routinely with systems which involve literally thousands of parameters.
(The designer, of course, deals with these large systems heuristically.)

The procedure commonly used by designers is an analysis-redesign procedure which
is referred to here as "iterative design." In this procedure the designer makes some
assumption concerning the initial values of the system parameters and analyzes the
system. On the basis of this analysis the system parameters are modified and the system
again is analyzed. This procedure is repeated until a "satisfactory" design is achieved.

An interesting characteristic of iterative design is the fact that while the redesign
rules usually deal with questions of strength (e.g. keeping the stress less than the allow-
able), they produce satisfactory and sometimes optimal results in terms of weight. In
a sequence of papers [2, 3] the phenomenon of iterative design has been studied. Of
particular interest here is [4] in which it was possible to show global convergence for a
simple model of the truss problem.

In [2], the truss problem has been generalized to cases such as frames and sandwich
plates which can be described by a mathematical programming problem with a convex,
homogeneous objective function and linear equality constraints. In this paper, conver-
gence of the algorithm described in [2] is discussed and shown to be monotone globally
in one case and locally in general. This extends the result obtained in [4].

Iterative design. Using the notation of (2), the optimal structural design problem
is to find an optimal F which will
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minimize t(F) subject to NF = P. (1)

Here t is a scalar, convex, homogeneous, positive function of degree one, F is an n X 1
(row X column) matrix of independent variables, and NF = P represents a given system
of m (m < n) linear equality constraints which any feasible F must satisfy. In Eq. (1),
N and P may be regarded to be n X m and m X 1 matrices which are given and the
tilde is used to indicate the matrix transpose. For the cases discussed in [2], the system (1)
refers to minimizing weight (in terms of force variables) while satisfying the requirements
of equilibrium.

Convex programming with linear constraints is, of course, not new. Zangwill [5], for
example, has derived the Kuhn-Tucker conditions for an optimal point F as

NF = P and Vt(F) = NS (2)

from the Lagrangian function

L = t(F) + S(P - NF) (3)

where 8 is an m X 1 matrix of Lagrange multipliers and the symbol Vt(F) is used to
represent the n X 1 gradient matrix of the function t evaluated at the point F, i.e.
('Vi(F))i = dt/dFi\F„p . Beyond this Zangwill is concerned with the application of
gradient techniques to this problem.

In [2], Eq. (2) is replaced by

NF = P and 2 tVt(F) = 2 tNS (4)

which can be rewritten as

NF = P and V? = 2<p1/2Nd (5)

where

<p = f => V? = 2tVt (6)
in order to avoid the Hessian matrix of t which is singular (since t is homogeneous of
degree 1). S7<p is then linearized at point F' as

V^(P) ~ V<p(F') + H(F') (F - F') = H(F')F. (7)

Here H is the positive definite Hessian matrix of <p. Eq. (5) is now solved iteratively as
NFU) = P and Hln-"FM = 2(<f>(n'1))1/2N5M (8)

NF(n) = P and FM = K(""I)iV5(n) (9)

where
= 2 (0("-1,)1/2(i/CB"1))"1. (10)

Eq. (9) then has the form of a linear structural analysis problem.
It is the purpose of this paper to discuss the convergence of the procedure described

in Eq. (9).

Monotone convergence. In this section it will be shown that the objective
function t behaves monotonically under the algorithm described in the preceding section.



162 W. R. SPILLERS AND S. AL-BANNA

Global convergence is shown in the case in which the Hessian matrix H is constant;
otherwise the convergence is local.

The convergence proof makes use of four lemmas which are presented first. These
lemmas in turn use some results for convex, homogeneous functions (6) which are now
listed.

Since t is a convex, homogeneous function of degree 1, for any x, y 7^ 0

t(x) = £Vt(x) > XVt(y) => £e < 0 (11)

where t = Vt(y) — Vt(x). Since t is homogeneous of degree 1, <p = t2 is homogeneous
of degree 2 and

2<p = <f> => V <p = Hx. (12)

It follows that

t(x) = S7t(x)K(x)Vt(x). (13)

Lemma 1. (A local result.) V<Cn)KMVt(n' > when |V<<n> -
V<<n_1)| is sufficiently small.

Proof. Let e = V<(n_1> - Vtin). It follows that Vtin'1'= VtMKM Vt(n)
+ 2iKin)\7tin) + iKin)t. Since the last term in the above equation can be made as small
as desired by requiring |e| to be sufficiently small and since the next-to-last term is
negative by virtue of Eq. (11), the lemma is proved.

Conjecture. Lemma 1 is valid for any Vi'"' and Vt(n'v.
Lemma 2. (Virtual work.) FM A"" = Fln~l) A(n' where A = N8 => A"° = NSM.
Proof. NFin) = NF(n_I' = P => SMNFM = 5MNFin'u or A(n)F<n> = A(nlF(""".
Lemma 3. A<n,K(n_1)A(n) < t(FM) = t(n).

Proof.

tM = fl< n, v;<»,

> Fw Vi'""1' (using Eq. (11))

= A<n) F'"-1' (using Eq. (9))

_ ^("i p>.n) (using Lemma 2)

_

Lemma 4. A<n) A(n) < <(n~1).

Proof. Since FM minimizes the strain energy given , it follows that

(J^(n-l))-l^T(n) ^ p(n-l) ^j£(n-l) ^-l p(.n-l)

^(n) y^n"l) j^(n— 1) —— 1) V^<n_1)

£<"' A'tn_1> A(n) < K(n_1) V£("_1> = <(""n.

Theorem. /.<n> < <(n_1) when either 1) \Vtin} — is sufficiently small or
2) H is constant.
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Proof.
((») = p(n) v<(n) = £<»> Kin-1) V(M

(tM)2 = (Au> Kln~u VtM)2

< (A(n) K'n~l) A(n))(V<(n) X""1' V<(n)) (using Schwarz's inequality)

< tM(VtM K<n-1) V<(n>) (using Lemma 3)

< <<n)(v/("_1) K(n_1) V£("_1>) (using Lemma 1)

< tMt(n'u,

or
i(n) < <(

This is the direct generalization of the proof given in (4) and uses the local result of
Lemma 1. For the case in which H is constant, i.e.

£^(n)   jj(n-l) 2£(n-l)   jg-(n) ^(.n-l) j ^(n)

it is possible to proceed using Lemma 4 as follows:

(tMy < (A<n) K(n_1> VtM)2

< (A<n) K(n_1) A<n>)(V<(n) K<n_1) Vi(n>)

< tu~v(VtM Km V<(">)<(n-1,A<n) (using Lemma 4)

< (<<n_1))2.

It may be noted that the requirement of H being constant does not imply that t is
linear (see, e.g. [6]).

Some practical considerations. The algorithm discussed here is a Newtonian scheme
and suffers the usual difficulties associated with such schemes. In the two cases in which
the authors have applied this algorithm the objective function has been separable,
i.e. t(F) has the form

KF) = £ U{F,), (14)

and in both cases the dimension of Ft has been small enough to allow the required
Hessian matrices to be computed explicitly by hand so that recourse to numerical
differentiation was not necessary. When this is true, at each step in the calculation it is
only necessary to solve a sparse system of linear algebraic equations. It is here that the
effectiveness of the method lies since highly efficient techniques are available to deal with,
sparse systems.

It should be noted that in the separable case it is sometimes convenient to replace
21 Vt(F) = 2tN8 with 2U V<<(/\) = 2t,(Nd)i (i = 1, • • •) in Eq. (4).
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