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Abstract. The discontinuity in pressure gradient predicted for two-dimensional
inviscid subsonic or supersonic flow at a jump discontinuity in wall curvature is smoothed
by means of local solutions which take into account the interaction of a laminar boundary
layer with the external flow.

1. Introduction. Solutions to the equations describing fluid motion in a laminar
viscous boundary layer along a solid boundary are typically obtained for a specified
pressure gradient at the surface. If, however, it is postulated that a small pressure
change occurs over a suitably small distance along the boundary layer, an interaction
with the external flow must be taken into account. The details of the resulting local
pressure distribution then cannot be specified in advance, but must be found by studying
changes in the boundary layer coupled with small perturbations on the external flow.
A description in terms of asymptotic expansions for large Reynolds numbers has been
proposed for the initial pressure rise caused by an oblique shock wave impinging on a
laminar boundary layer [1]; for the incompressible flow near the trailing edge of a flat
plate [2, 3]; for a boundary layer which is deflected through a small angle at a convex
corner, in either a subsonic or supersonic external flow [4]; for the interaction of a
boundary layer and a weak shock wave at transonic speeds [5]; and for other related
problems. In each of the examples cited, the approximate equations are nonlinear (except
for the particular case studied in [4]), and an explicit solution for the pressure can be
obtained only by numerical integration. An example for which a solution can be derived
analytically, in the form of an integral representation, arises when a boundary layer
encounters a jump discontinuity in wall curvature. At the discontinuity, inviscid-flow
theory predicts a jump in the pressure gradient if the external flow is supersonic and
gives a logarithmically infinite pressure gradient if the flow is subsonic. By means of
appropriate local solutions, these discontinuities can be removed, and continuous
expressions for the pressure gradient can be obtained which are presumed to be correct
asymptotic representations as the viscosity coefficient approaches zero. In Sec. 2, the
relevant orders of magnitude are discussed, a linearized boundary-layer problem is
formulated, and the solution is obtained in terms of the still unknown pressure distribu-
tion along the wall. Interaction with the external flow is then taken into account; equations
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for the pressure are given, and solutions are derived in Sec. 3 for both supersonic and
subsonic external flows. The results may be helpful in suggesting local approximations
for use in numerical integration of the boundary-layer equations near discontinuities
of this kind.

2. Perturbations in the boundary-layer flow. We will consider two-dimensional
laminar steady flow, in the direction of increasing X, above a wall described locally by
Y = 0 for X < 0 and Y = — |kX2 for X > 0, where k > 0 and X, Y are rectangular
coordinates made nondimensional with the distance L along the wall from its leading
edge. Solutions for nonzero upstream curvature can also be found quite directly from
the results to be given here. Nondimensional dependent variables will be defined by

u = U/U„ = (TJTa)+r , v = V/U„ = ~(TJTa)+x ,

and

p = (P - P„)/P„UJ,
where U, V are velocity components in the X, Y directions respectively; P, p, T are
the pressure, density, and temperature respectively; Tw is the temperature at the wall,
taken to be constant; and the reference values XJa , Pa , p» , 7'„ are the values of U, P, p, T
predicted at X = 0, Y = 0 by inviscid-flow theory. Also /3 = |1 — Mj|1/2, where
is the Mach number corresponding to U„ , pa , p= . The viscosity coefficient p is assumed
given by p/p„ = CT/T„ , where C = pwT„/(p^Tw) and pw , /t„ are the wall and reference
values of p. respectively. We will seek asymptotic solutions near X = 0, Y = 0 in the
limit as the Reynolds number R = p„ U„L/p„ —> oo.

For Ma, > 1, the pressure at the wall according to inviscid-flow theory for X —> 0
is given by

p (k/$)XH(X) (2.1)
where H(X) is the unit step function: 11 (X) = 0 for X < 0 and H(X) = 1 for X > 0.
If instead M„ < 1, the complex velocity locally is u — iv/p ~ — (p + iv/fi), where

p + iv/p ~ kt~1P'1z log z — (2.2)

as a = X + ifiY —> 0; v ~ — kX as arg z —> 0 and v/X —> 0 as arg z —> tt. The thin bound-
ary layer approaching X — 0 has a velocity profile which is linear in the stretched coordi-
nate R1/2Y as Rl/2Y —» 0. Locally the most important changes in the profile shape occur
in a still thinner sublayer close to the wall [1, 2, 3, 4, 5], where the changes in the viscous,
pressure, and inertia forces are all of the same order as R —> °o. The remainder of the
boundary layer experiences primarily a displacement effect because of the small accelera-
tion of the fluid in the sublayer, and the resulting small decrease in flow deflection angle
is nearly constant across most of the boundary layer. The appropriate linear-theory
pressure-angle relation describes the corresponding perturbations in the external flow.
This information is sufficient to suggest [1, 2, 3, 4] that an interaction of the boundary
layer with the external flow occurs in a streamwise distance X = 0(R~3/S) and that the
sublayer thickness is given by Y = 0(R~5/8). If the local changes were just large enough
for separation to occur, the inertia term in the sublayer equation would be nonlinear
and it would follow that locally p — 0(R~l/i). In the present case the pressure should
match asymptotically with (2.1) or (2.2), and so p is either 0(R~3/S) or 0(R~3/8 log R).
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The following stretched coordinates and asymptotic expansions are introduced for
the description of the sublayer:

„ 5/4fl3/4p3/8 3/4al/4p5/8
r _ —J: £L v 7/ _ Jh P £5  y (9

(t /t ^3/2(^3/s ' y (j1 j^3/2^5/8

(Tw/Ta>)C3/i y2 , (TJTa)5/2C7/8
ai1/2(3l/2R3/i 2 + * a°/4p7/iR7/8

j ^ log + jhi(x, y) + y)} , (2.4)

(TJT„)3/2C3/S J. x , ((Tw/Ta,)3/2C3/S |x,, , . ,, ,0
P~K ai6/v/4fl3/8 v-logI a,6/y/4«3/8 J+Pl(a;^ (2-5)

where at is the initial value of (Tw/Ta,)(R/C)~1/2uY at F = 0 as i equal to
0.332 for a flat plate. For Af„ > 1, j = 0 and (2.5) matches asymptotically with (2.1)
as R —> with |X| —> 0 and \x\ —> «>, provided that pl ~ — xH(x) as \x\ —* ro. For
M co < 1, j = 1 and (2.5) matches with (2.2), for arg z —* 0 or ir, if pj —> 0 as |z| —* <».
We will choose if/u as the portion of \p associated with the term 0(R~3/8x log |z|) in p,
and consequently —> 0 as x —> — °° for I„ < 1 as well as for M„ > 1. Suitable factors
have been introduced in (2.3), (2.4), and (2.5) so that \pu , i/'i, and pi will be independent
of the parameters. The transformation (2.3) remains the same as in [1] and [4], but (2.4)
and (2.5) are modified since the requirement of nonlinearity in the sublayer equations
has been replaced by the matching conditions for p.

We first consider the solution for ii(x, y). In the limit as R —> °° with x, y fixed, the
largest terms in the Navier-Stokes equations lead to a linearized boundary-layer mo-
mentum equation

ytuv ~ iix = -Pi + iuw (2.6)

Differentiating with respect to y, and defining Ti = \plvv ,

Tin — yr lz = 0. (2.7)

Since ipL = \plv = 0 at the wall, and the displacement of the wall from F = 0 is o(R~5/s)
for X = 0(R'3/S), one boundary condition is t1v(x, 0) = Pi'(x). We also require rt —* 0
as y —> oo and as x —» — <».

If we specify instead that ri(0, y) = 0 for y > 0, rly(x, 0) = 0 for x > 0, and Ti —» 0
as y —> co for x > 0, a solution to (2.7) can be obtained which is analogous to the one-
dimensional temperature distribution T(x, t) due to a unit heat source at x = t = 0.
When the right-hand side of (2.7) is replaced by S(x) 5(y), the resulting differential
equation is invariant under a transformation x —> k3x, y —> ky, tx —* k~2TX . Hence a
solution for x, y > 0 has the form tx = af2/3/(ij), where -q = y/x1/3, and it is found
that /(j?) = c exp (— ?/3/9). Integration of the modified (2.7) gives the added condition
that the integral of —yri over y from 0 to « is equal to one, and it follows that 1/c =
— 3I/3r(2/3). By analogy with the one-dimensional heat-conduction problem, the
solution of (2.7) satisfying rly(x, 0) = Pi'{x) is then obtained by distributing "sources"
along y = 0, with "source strength" Pi'(x):

ti(x> y) = 31/3r(2/3) /I (xP-%" exp [~(1/9)^/(a: - *)] d(2'8)
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It can be verified by direct substitition that (2.8) does in fact satisfy the required wall
boundary condition. The solution (2.8) could instead have been derived from the results
of [6], and has also been used in [5], Since t1 = \piyy , the corresponding solution for \pt
is obtained by repeated integration. For y —> co, one finds

h ~ - Ay at + V/(x) (2.9)

where A = 3"2/3r(l/3)/r(2/3).
For subsonic flow, an analogous result for \pu is obtained if Pi(x) is replaced by

ir lx log |z| and ti by tu = ipUyy. Convergent integrals for tUv and for tUx can be derived
after differentiating (2.8) and (2.7) with respect to y and x respectively and then making
these replacements. We find

Til, = 34^Vr(2/3) / exP [—(i/9)?/3/^ - $)] d£, (2.10)

Tl" = 31/37iT(2/3) L & - tf'3 6XP - ?)] d(2J1)

where the solution for rUx has been obtained by the procedure of the preceding paragraph.
By setting t = (1/9)y3/(x — £) in (2.10), expanding the logarithm and integrating, it
is found that the largest terms in ipn as y —» <» are 0(y3 log y) and 0(y3). Additional
terms can perhaps be derived more easily using the same substitution in (2.11) and
then interchanging the order of integration over t and y. Finally, for y —» <*>,

hi ~ tlog 9 - b (1 + +aAx2/3y

- - log ̂  + 1 (-4 + ¥(2/3))® + • • • , (2.12)
7T y X 7T

where V(q) = (d/dq) log T(q)] u = 31/2/2 for x > 0 and <j = — 31/2 for x < 0.
To complete the description of the changes in the boundary layer, solutions are

also required for R'/2Y = 0(1). The differential equations and matching conditions
suggest a solution of the form

^t?2 yp ~ ia*(y*) + ^i?4 f*(x, y*)

C3/s

Ii3/8 l0g
(r>3/8\ ^>3/8

^m)xi2i*(y*) + ^371 <p2*(x, y*) + • • • , (2.13)

r>1/2 rn syl/8 (m /rp \l/2
7y* _    Y _ ~  V-* w/ J- co)  /Q 1 A)
V ~ C1/2 Twy - R1/a a3/ii31/4 y { '

where \p is now defined by pn = pa\pr , pv = — p^ipx the previous definition is recovered
as y* —> 0. As y* —> <», ip0* ~ (Ta/Ta)y*; and as y* —> 0

to* ~ \ a,y*2 + {log -9— - ^ - ^(2/3)|j/*3 + ■ • • (2.15)

in agreement with the largest terms of (2.4) as y —* °° ; as before, j = 0 for Ma > 1 and
j = 1 for M„ < 1. It is found that the largest perturbations in u, p/pa , and T/T„ at a
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fixed point follow from a small displacement of streamlines toward the wall, and not
from changes along streamlines. It follows that \p* satisfies (\pix*/ipo*')v' = 0, so that the
largest term in the streamline slope is a function of x but not of y*[ 1, 2, 3, 4, 5], and
can be expressed in terms of the pressure perturbation pi(x) as

«, ffr k(tjt„)3/2c3/8j .2rA r
u ~ (TV/TJ"R"8 to*7 ~ ay6/in3/s I J 3x1/s + A J.w (x - £)I/3J (2'lbj

where the right-hand side is found by matching with the sublayer solution. The functions
\p2i * and \f/2* satisfy

(TJT„)3/2\to*P0u0

5/4^3/4ar ~P"' (hil\
{TJT„)3/2 W/„.

- ("■• - +5 -©• S ■ <->
where we have set p/p„ = p0(y*) + 0(R~Wi) and p0(y*)u0(y*) = (Tw/Ta,)t0*'(y*).
As y* —> 0 the largest terms from (2.17) and (2.18) can be shown to match correctly
with corresponding terms found from (2.9) and (2.12) as y —> <*>.

If M„ < 1, upstream solutions corresponding to (2.4) and (2.14) are also of some
interest, although not really needed here. As x —> — <» and X —> 0, solutions obtained
for y* fixed and for y* —> 0 with rj = y*/Xin fixed are, respectively, of the forms

(i)172* - io*(y*) + X2/34>Ay*) + x log X^{y*) + X<t>2(y*) + ■■■ (2.19)

~ ialV*2 + X log XfM) + XU-n) + • • • . (2.20)

The functions /1 , /2, • • • satisfy the wall boundary conditions, and as -q —> the largest
terms match with corresponding terms in \p*, 4>i , 4>u , 02 , • • • as y* —* 0. In particular,
/1 = (const.) -q3 and /2 = 0(??3 log r;) as > °°, for matching with the term 0(y*3 log y*)
in \f/0That is, even for x —» — m an inner solution (2.20) is necessary to correct the
behavior of ^0* as y* —» 0. Additional details of these solutions are easily worked out.

3. Solutions for the pressure distribution. As y* —» oo, the largest terms in (2.13)
should match with solutions for small perturbations in the external flow, evaluated for
R3/sY —> 0 with R3/SX fixed [1, 2, 4]. For supersonic flow, since p ~ (3~lv/u in this limit,
it follows from (2.16) that pi(x) satisfies

p,(x) + xH{x) = A (a.Pl q./» dk (3.1)

where 'pi(x) —> 0 as x —> — <». For subsonic flow, p and (3~'v/u are related as y* —»
by a solution to Laplace's equation in suitably stretched coordinates for the external
flow. From (2.16) it then follows that
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where p/'(x) ~ — 1/(irx) as x —> 0 and the Cauchy principal value is to be taken wherever
necessary.

Since (3.1) is in the form of a convolution integral, Fourier transformation gives

F{Pl(x) + xH(x)\ = AF{Pl"(x)}F{x-U3H(x)\ (3.3)

where

F{j(x)} = f exp (—iwx)f(x) dx. (3.4)
J —00

The left-hand side of (3.3) is found by repeated integration by parts. The integral
defining F\x~l/3H(x) j can be regarded as an integral along the positive real axis in a
complex z-plane, with — t < arg z < ir. For u > 0 or for a> < 0, the integration can be
carried out instead along the negative or positive imaginary axis respectively. Then (3.3)
becomes

-r2 - r*F{Pl"(x)\ = Ar2/3 exp (—«/3)r(2/3)^{Pi"(a:)} (3.5)

where f is complex, such that |f| = co, and we will take —-3^/2 < arg f < ir/2.
Thus (3.3) gives an analytic function for F{Pl"(x)\. Inversion leads to an integral

along the real axis

Pl"(x) = _2tt /_„ 1 + exp (-li/3)^/B)4/3 (3'6)

where B~i/3 = 3~2/3r(l/3) = AT(2/2>). For — 3ir/2 < arg f < -k/2 the only singularity
of the integrand is a simple pole at f = exp ( — iri/2)B. For x < 0,

BPl(x) = —f exp (Bx). (3.7)

For x > 0, a convenient alternative form is obtained if (3.6) is replaced by twice the
real part of the integral along the imaginary axis arg { = ir/2. We find

, s 31/2 r exp {—Bxt) dt ,Q
p1(x) - -x - 2vB ^ -5/3(1 + (4,3 + f/3) (3.8)

where Pl{x) and Pl'(x) have been required to be continuous at x = 0. The result given
by Stewartson [4] for a wall with convex corner defined by y = — axH(x), a <K R~Ui, is
recovered by differentiation with respect to x. A series for small x can be obtained by
expanding (3.6) for 0 < co < w0 and (3.8) for w0 < , where ai0 1 and u0x « 1.
The result is, for x > 0,

Bp1(x) ~ exp (Bx) + ~ 3I/2r(2/3)(Ba;)7/3 + 31/2r(l/3)(Bx)1,/3 + • • • . (3.9)

Expansion of (3.8) for x —> °° gives

r> / \ n 31/2r(l/3) , 31/2r(5/3) , ,,
BPl(x)~ Bx 2t(Bx)1/3~ + 2^(5x)6/3 + "' ' ( )

For subsonic flow, Fourier transformation of (3.2) gives

(1 /t)F{Pi(x))F{1/x) = -(2/3 )AF{ax-1/3\ + AF{x~1/3H(x)}F{p1"(x)} (3.11)

where the Cauchy principal value is understood at a: = 0. Also F{pi"(x)} = — u2F{Pl(x)}
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and F{ l/x} = ±iri, where the upper sign is to be used for co < 0 and the lower sign
for cc > 0. It follows that

F\v "fx) I = =F 'exP(±iT/3)("/f/J H 12)
iPl ( jl exp (±w/3)(co/i?) ± i (3'12)

where the same sign convention applies. Inversion gives

Vl"(x) = -i. - I Re f   eXP/ovX)/m4/3 : (3.13)irx it Jo exp (—«/3)(co/.d) — X

where the real part is to be taken. The integral can be rewritten by setting
w = B exp (—iri/'2)t, and co = B exp (wi/2)t for x < 0 and for x > 0 respectively. The
results are

Pl"(«) = -i- - ^ r exp(y dt (x < o), (3.i4)
WX TV Jo 1 "t" C

i /? r°° 1  ^1/2 /9v4/3
Pi "(a;)   + - / 773 oi/2j47T 1 t exp (-Bxt) dt (x > 0). (3.15)

TtX It Jo I — O I 1
These expressions are the derivatives with respect to x of the results given by
Stewartson [4] for subsonic flow past a convex corner. It follows from (3.14)
that Pi'(x) ~ tt"1 log |Z?a;| — 7/it as x —» 0, where 7 = 0.577 • • ■ , and that -Bpi(O) =
(3/8)23/4(l + 21/2)_1/2. For x —* — m and x —» + », (3.14) and (3.15) give, respectively,

wBPl(x) ~ r(5/3)(Bx)~5/3 (x -» - 00), (3.16)

ttBPi(x) ~ 531/2r(l/3) (Bx)~1/3 + ir(5/3)(Bx)"5/3 (a; +»), (3.17)

The terms of order x~1/3 in given above and in \p,u obtained from (2.12) are consistent,
for x —» ±00, with a term in the complex velocity (2.2) which is proportional to
(-1 + 3-1/2i)Az~1/3 as z0.

References

[1] K. Stewartson and P. G. Williams, Self-induced separation, Proc. Roy. Soc. London Ser. A 312
181-206 (1969)

[2] K. Stewartson, On the flow near the trailing edge of a flat -plate. II, Malhematika 16, 106-121 (1969)
[3] A. F. Messiter, Boundary-layer flow near the trailing edge of a flat plate, SIAM J. Appl. Math. 18,

241-257 (1970)
[4] K. Stewartson, On laminar boundary layers near corners, Q. J. Mech. Appl. Math. 23, 137-152 (1970);

corrections and an addition, 24, 387-389 (1971)
[5] H. M. Brilliant and T. C. Adamson, Jr., Shock wave-boundary layer interactions in laminar transonic

flow, AIAA J. 12, 323-329 (1974).
[6] W. G. L. Sutton, On the equation of diffusion in a turbulent medium, Proc. Roy. Soc. London Ser.

A 182, 48-75 (1943)


