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APPLICATION OF HILL FUNCTIONS TO CIRCULAR PLATE PROBLEMS*
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Abstract. A type of finite element—hill functions—is applied to solve circular
plate problems in conjunction with the method of Lagrange multipliers which is used
to treat various constraint conditions. Results obtained compare very nicely wTith the
exact solutions.

Introduction. Finite-element methods have been widely applied to obtain numerical
solutions in both engineering [1, 2] and applied mathematics [3, 4, 5], The popularity of
the methods may be partially due to their ability to deal with more complex problems
and to provide accurate numerical results. However, it should be noted that there are
different kinds of finite-element methods and the use of hill functions as finite elements
which are developed in applied mathematics [3, 4, 5, 6] is one of them.

In [6], hill functions are utilized to solve one-dimensional string-beam problems in
which the so-called "method of artificial parameters" is used for handling various
boundary conditions. In the present paper, these same functions are employed to solve
axisymmetric (polar coordinate) circular plate problems; the Lagrange multiplier
method is used here for the treatment of constraint situations. The striking difference
between these two types of applications is in the evaluation of matrix elements of the
system equations; for string-beam problems, all the terms in these elements turn out to be
simply multiples of hill function coefficients [6], but for circular plate problems, they are
not so straight-forward and require, for evaluation, methods of numerical integration.

Rayleigh Ritz method. For the sake of completeness and use in the following sec-
tions, key equations involved in the Rayleigh-Ritz method are presented in this section.

Suppose there exists a sequence 2/1,2/2, • • ■ of admissible functions in the variational
problem such that

lim F(yn) = d, (1)
n—>00

where d is the lower bound of the functional F(y)-. The Rayleigh-Ritz method is a recipe
for the construction of such a sequence by choosing an arbitrary system of coordinate
functions, «i , u2 , ■ ■ ■ , with the property that any linear combination

yn = Cjo>1 + c2w2 + • • • + c„co„ (2)

is admissible in the variational problem, and that the solution function y and its relevant
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derivatives may be approximated with any degree of accuracy by Eq. (2) and its corre-
sponding derivatives, respectively.

If the problem under consideration, F(y), is a quadratic functional, then the values
Ci can be determined by n linear simultaneous equations

^ = 0, <=1,2, ■••,». (3)

Problem formulation and system equations. For simplicity, the axisymmetric
case of circular plate problems will be considered herein (Fig. 1), in which the load is
axisymmetrically distributed but allowed to vary along the radial direction r. The
governing differential equation is given [7] as

I Air A I A. L<k
r dr \ dr 1/ dr \ dr, r? <4>

where y is normal deflection of the plate, q is the loading intensity and is a function of r,
and

n - Et" (Z\
D - 12(1 - v2) (5)

in which E is Young's modulus, t is the thickness of the plate and v is Poisson's ratio.
For generality, the constraint conditions associated with Fig. 1 may be expressed by

$i(2/o , 2/0', 2/0") = 0 (6a)

$2(2/,. , 2la', ya") = 0 (6b)

$3(2la , 2la', ya") = 0 (6c)

where y0 = y(0), ya = y(a), and ( )' = (d/dr)( ).
The energy expression corresponding to Eq. (4) is also given [7] as follows:

• f {»[(»")' +»- +(£)'2 yq)rdr. (7)

n///v/n //////// zz^
X

a
Fig. 1. Circular plate under axisymmetric load.
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Substituting Eq. (2) into this expression yields a functional of n undetermined constants
which may be put into a form of

Fi = IIaMc} - LcJ{g} (8)

where |_cj = [_Ci , c2 , • ■ ■ , c„_J, [X] = stiffness matrix of system of equations (4), and
{q} = column matrix related to applied loading.

Before the Rayleigh-Ritz method can be applied to this functional, account must
be taken of constraint conditions, Eqs. (6), which may be written in matrix notation as

{$} = 0 (9)

where L$J = , $2 , $3_|. Substitution of Eq. (2) into Eq. (9) yields

{<£} = [T]{c] = 0 (10)

In the Rayleigh-Ritz method, Eqs. (3) (which have n equations) are not all inde-
pendent since they are related to each other by the constraint equations (6). Conse-
quently, Eqs. (6) can be viewed as three extra conditions on this problem. The procedure
employed here to eliminate these extra conditions is the classical method of Lagrange
multipliers [8, 9], We should here define a multiplier X, for each of constraint equations.
The product of the vector of Lagrange multipliers, [_XJ = (_Xx , X2 , X3J, and constraint
equations (10) is added to the original functional (Eq. (8)), i.e. (with L^J[r]{c} =
LcirHx})

F = §LcJ[K]{c} - |_cj{«} + Lcj[r]rjx}. (lia)

Application of Eqs. (3) with variation of all parameters in {c} and {X} gives

T
n
1
T
3
I

K

0

-3-

0

(12a)

Eq. (12a) is a symmetric matrix and can be solved for {cj and {X} provided that
coordinate functions in Eq. (2) have been properly selected. In this paper, a special
type of coordinate functions—hill functions—is used for all computations, a brief
description of which will be given in the next section.

A different arrangement of constraint conditions in (11a) may result in a symmetric,
banded-width matrix. This new arrangement is

f = Lcjrjtf,} + iLcJ[£]{c} - |_cj(g} + Lcj[r2]T|x2} (lib)

where |_XJ = (_Xj = Xt and LX2J = [>2 , X3J.
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A set of equations similar to Eqs. (12a) may be readily obtained as follows:

T
1
A
T
n
!
T
2
J

r1T

r,

K r/

Xi

C r = (12b)

1

To obtain a solution to Eqs. (12b) by using hill functions as coordinate functions,
advantage can be taken of the properties of symmetric, banded-width matrix so that
less computing time than for solving Eqs. (12a) can generally be expected.

Coordinate functions—hill functions. Some finite element models called "hill func-
tions" have recently been developed [3, 4, 5, 6], These models, which can hardly satisfy
given boundary conditions without special considerations but are quite economic when
used in numerical computation, are utilized as coordinate functions in this paper.

The construction of hill functions has been described in fair detail in [3, 6]; here
an outline only of the equations is given:

n

>,(£), —n/2 < x < n/2 (13a)
1=1

>,© = Z -1/2 < € < 1/2 (13b)
t = 1

where "4>(x) denotes the hill function of order ?t; x and £ represent the global and local
coordinate systems, respectively.

The graphical representation of Eqs. (13) are sketched for n = 4, 5 in Fig. 2. From
this figure we note that the entire domain of "<5>{s), —n/2 < x < n/2, is divided into
n even intervals, and in each interval a local coordinate system (—1/2 < £ < 1/2) is
set up having the origin at the interval center. Thus, n<t>(x) can be taken as a sum of n
portions, Eq. (13a), and each portion of this function is represented in the local coordinate
system by a Fourier series expansion in terms of Legendre polynomials P,(£) (with
Pi(£) = 1), Eq. (13b) in this equation are coefficient constants).

Derivative expressions of hill functions may also be given as follows:

VHft) = --Vi"""©,
V"(0 = - "-,0f-i<i"1>(£) for 3 = 2, ••• ,n - 1,

or

n, Oc),y\ / ,v'(k\ n-kvHft) = E(-ir !■ ""V,-.©
t =0

(k = 1, • • • , n — 2; j = 1, • • • , n; 1 < j — i < n — fc), (14a)
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x - global coordinate
f- local coordinate

-f~l/2-f-l/2*j

\(f)=Area B
n"V>(x) =40(x)

-f i—f i i-f f
H/2-H./2-|-I/2-H/2-)h/2-H/2-H/2-H/2"-]
1 j = l—I-—j=2—1—j =3—I- j =4—I

nst,(x)=5^.(x)

--f I—f Kf I—f t~~f
1—1/2 -+-l/2-f-|/2—t~l/2-f--l/2 -f-l/2—(* I/2-H/2-H/2-H/2-)
K-j = l + j =2 "j—j =3 —-j =4—|—j =5 H

(b)

Fig. 2. Construction of hill functions, Eqs. (13).

and

V'ft) = E j — 1>2, • • • , n. (146)

in which the superscript (A:) denotes the order of derivatives. The coefficients "bifja) can
be obtained in terms of "~ka,,j through Eq. (14a).

The numerical values of "a, ,- with n ranging from 1 to 4 are given in Table 1; the
hill functions corresponding to these values are plotted in Fig. 3. Incidentally, a computer
program has been developed which computes "a,,, and "6,,,"' up to any order desired.

Expression of stiffness matrix [X]. A special type of coordinate functions—hill
functions, summarized in the previous section—will be utilized herein for all calculations.

TABLE I.*

nai,j in Eqs. (13) (n — 1, • • • , 4).

n j i — 1 i = 2 i = 3 i — 4

1 1 1
2 1 0.5 0.5
3 1 0.1667 0.25 0.08333

2 0.6667 0 -0.1666
4 1 0.04167 0.075 0.04167 0.008333

2 0.4583 0.275 -0.04167 -0.025

* Because of the symmetry of hill functions about x — 0, only symmetric parts of coefficients are
given; for more accurate values, a double precision version may be used in the computer code.
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Fig. 3. Profiles of hill functions n4>(x), Eqs. (13), with 1 < n < 4.

Before going to solve Eqs. (12), we shall here give an expression for the stiffness matrix
[K] of Eqs. (12); the derivations of [T] and {g} may be quite straightforward and will
depend on constraint conditions and loading situations, respectively, in each individual
case.

In order to suit the dimension requirements specified in the hill function description,
the following dimensionless quantities are introduced:

r = hf, y = hy, h = a/m (15)

where m is the total number of intervals into which the entire domain (0 < r < a) is
divided.

According to Eq. (2), the deflection function y is now expressed in terms of hill
functions by

m + n— 1

y>(f) = £ c,->(f - j). (16)
j = i

A graphical representation of Eq. (16) is sketched in Fig. 4 for n = 4 and m = 5.
By use of Eq. (16), a generic term of [/£] may be given as

K,, = 2*D<\[f<t>"(f - i), 4>"(f - j)]

+ i/[0'(r - i), - i)] + v[tt>"(r - i), 4>'(f - j)]

+ - i), 4>'(r - j) (17)

where

W(f - i), 4>"(f - j)] = P >"(f - r)>"(f - j)f df, (18a)
Jo

- i), - j)] = f "<t>'(f - - j) df, (18b)
Jo

r»m

- i), 4>'(r - j)] = >"(f - iTi'if - j) df, (18c)
^0
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Fig. 4. Graphical representation of Eq. (16) with n = 4, m = 5.

[j - i), 4>'{f - j)] = f" V(f - iW(f - j) rr dr. (18d)

After substituting Eqs. (13) and its corresponding derivative expressions, Eqs. (14),
into Eqs. (18), evaluation of these quantities can be obtained without any major diffi-
culty. However, it should be realized that evaluations of Eqs. (18b, c) are performed
interval by interval, utilizing the orthogonality of the Legendre polynomials in
(-1/2, 1/2), i.e.,

L1/2

PiiQPAQdl = 1/(2* - 1), t = j; (19)

= 0, i j.

And these evaluations turn out to be simply some kind of multiplication of coefficients
of hill function and their derivative expressions, and "&(./*', a detailed example of
which can be found in Ref. [6], On the other hand, the integrals (18a, d) do not enjoy
such simplicity due to existence of additional arguments f and 1 /f respectively, and
must be obtained numerically as follows: Eqs. (18a, d) are first taken as a sum of integrals
in each interval, and these integrals are obtained by further splitting each interval into
a number of subintervals and then employing the usual numerical integration schemes.

Here it is important to note that there is a singularity problem in Eq. (18d) when
f = 0. Eq. (18d) comes from the third term of Eq. (7), f0° (y'/r)r dr. A close examination
of this term reveals that, due to axisymmetricity, y' = 0 at the plate center, and an
application of L'Hospital's rule yields y'/r = y". Therefore, the value of Eq. (18d)
should be zero when evaluation of this quantity is performed at the plate center (r = 0).

Numerical results. Two example problems are solved using Eqs. (12b) as system
equations with matrix band-width of 13 as a hill function of order n = 6 is used. In
both calculations, 10 mesh spacings (0 ^ r ^ a) are adopted. Results are presented for
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Fig. 5. Uniformly loaded solid circular plate with clamped edge.

the deflection and stresses (<rr and ae) along the radial and circumferential directions;
<rr and <re are related to the deflection function by

<jr — 6 Mr/t2, <jo = Gil/j/i2, (20a)

5+^. <»")Mr = -D

1. Uniformly loaded circular plate with clamped edge. This example problem is shown
in Fig. 5 in which q(r) is a constant function; constraint conditions are

= V'( 0) = 0, = y(a) =0, = y'ia) = 0. (21)

The numerical results are displayed in Table 2. The computation, including construction
of hill functions up to order n = 6 and their corresponding derivatives, took 1.73 seconds
of PDP-10 CPU time.

2. Circular plate with a central hole, uniformly loaded along inner edge and simply
supported along outer edge. In this case (Fig. 0), the total loading along the inner circle
is P = 2wbQu , where b is the radius of central hole, Qn is the intensity of uniformly

TABLE 2

Comparison of the present residts and the exact solutions ([71, shown in parentheses) for a uniformly loaded
clamped circular plate (Fig. 5) (the hill function of order n = 6 and mesh spacings m — 10 are used),

r r r r r r- = 0 - = 0.2 - = 0.4 - = 0.6 - = 0.8 - = 1
a a a a a a

(a) Deflection yEP/qa4.

(0.170625 0.157245 0.120393 0.069888 0.022113 0 )
0.170628 0.157233 0.120377 0.069873 0.022098 0

(b) Stress along radial direction a,t2/qa'i.

(0.487500 0.438000 0.289500 0.042000 -0.304500 -0.750000)
0.505530 0.437587 0.289040 0.040964 -0.307187 -0.718076

(c) Stress along circumferential direction tref/qa'1.

(0.487500 0.459000 0.373500 0.231000 0.031500 -0.225000)
0.505530 0.458961 0.373340 0.230637 0.030579 - 0.215423



APPLICATION OF HILL FUNCTIONS 71

a

&

i
ZZZZZZZZZZ /7777I

hb
ZZZZZZZZZZZZZZZ3

Qo I Qo
Fig. 6. Simply supported circular plate with a central hole.

distributed line load. The constraint conditions for this case are

$1 = V"Q>) + ^ y'ib) = 0, $2 = y(a) = 0, $3 = y"(a) + v~ y'{a) = 0. (22)

The numerical results are obtained for b/a = 1/10 and presented in Table 3. The
computation for this problem took 1.42 seconds of PDP-10 CPU time.

Concluding remarks. Hill functions which are constructed on the basis of Legendre
polynomials have been utilized to solve axisymmetric circular plate problems. The
method of Lagrange multipliers is introduced to deal with constraint conditions.

The complexity in the application of hill functions to polar coordinate problems such
as circular plates is due to introducing polar coordinate functions into various integrals
such as Eqs. (18a, d) and thus usual numerical integration schemes are required to
obtain these quantities.

In regard to system equations, Eq. (12a) has its generality but Eq. (12b) is particu-
larly suitable for one-dimensional problems since matrix operations can take advantage
of the band-width property. In the treatment of constraint conditions, the method of
artificial parameters employed in [6] requires a series of adjustments on the magnitude

TABLE 3

Comparison of the present results and the exact solutions (Ref. [7], shown in parentheses) for a simply sup-
ported circular plate with a central hole (b/a = 1/10), uniformly loaded along inner edge (Fig. 6) (the hill

function of order n — 6 and mesh spacings m = 10 are used).

r r r r r r
- = o.l - = 0.2 - = 0.4 - = 0.6 - = 0.8 - = 1
a a a a a a

(a) Deflection yEt3/Pa2.

(0.632384 0.671552 0.442418 0.298681 0.148493 0 )
0.631973 0.571246 0.442228 0.298567 0.148438 0

(b) Stress along radial direction — <rri2/P.

( 0 0.652505 0.492952 0.291406 0.130385 0 )
0 0.654801 0.492650 0.291278 0.130139 0

(c) Stress along circumferential direction — tret2/P.

(3.221540 1.708558 1.007634 0.705834 0.509724 0.363098)
3.222170 1.707913 1.007047 0.705528 0.509471 0.362928
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of parameters, and thus the Lagrange multiplier method appears, at least for the cases
studied here, to be more efficient.

From results obtained herein, it seems that the hill function approach does indeed
provide very good accuracy and consequently deserves further research for application
to various practical problems.
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