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A NEUMANN SERIES REPRESENTATION FOR SOLUTIONS TO
BOUNDARY-VALUE PROBLEMS IN DYNAMIC ELASTICITY*

By
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Abstract. A regularized integral equation formulation for two exterior fundamental
boundary-value problems in elastodynamics is presented. In either case, the displacement
vector is assumed to be harmonic in time with a small frequency. It is shown that the
solution can be expressed as a Neumann series in terms of the prescribed function;
moreover, a sufficient condition for the convergence of the series is established.

1. Introduction. In recent years, increasing attention has been given to solving
scattering problems by the method of integral equations directly in terms of the unknown
functions in contrast with the corresponding density of the usual simple (or double)
layer potential. The idea of the underlying method is based on a functional interpretation
of the differential equations analogous to Green’s formula. The integral equation that
results may be regularized in the sense that the unknown function appears in such a way
as to vanish at the weak singularity of the kernel. This regularization enables one to
obtain a Neumann series solution for the problem under consideration. Complete details
of this approach can be found in the paper by Ahner and Kleinman [1].

In elasticity, the method of integral equations has been extensively explored for
various boundary-value problems. Most of them concern the integral equation formula-
tion in terms of the density of the potential, with the exception of those considered by
Kupradze [5] where the unknown function itself is used. The aforementioned approach in
scattering problems, however, has not been adapted there. The purpose of this paper is to
discuss the feasibility of applying this approach to problems in elasticity.

We consider two problems of small harmonic vibrations of an elastic body. The first
resembles a Neumann scattering problem in acoustical theory, which does not fall into
the standard boundary value problems in elasticity. The motivation for considering
such a special problem is, of course, obvious from the success of the technique used in
scattering problems. It is interesting to see the resemblance between the development of
these analyses. We shall, hereafter, refer to the first problem as the scattering problem in
elasticity (or simply the scattering problem). The second one is the classical second
fundamental boundary-value problem, the stress being prescribed on the internal
boundary. For simplicity, from now on we shall simply refer to the second problem as the
second fundamental problem. The precise statement of the scattering problem will be
given in Sec. 2. In Sec. 3, the problem is reformulated as an integral representation which
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is continuous as the field point approaches the boundary, unlike the Betti formula
representation (or the Green’s formula representation) where a jump discontinuity
occurs at the boundary. In Sec. 4, the solution of the scattering problem is expressed as a
Neumann series, each term of which involves the formal inverse of the corresponding
integral representation for the case where the frequency of the vibrations is zero. It is
demonstrated that thisinfinite series converges for small, but nonzero, values of frequency.
In the last section, we will simply present the results for the second fundamental problem
and omit the details, since the analysis is similar to that of the scattering problem
presented. For ease of reading, we present some of the proofs in the Appendix.

2. The statement of the scattering problem. Let S be a closed surface in R® filled
with homogeneous isotropic elastic material. We assume that S is a Lyapunoff surface, in
the sense of Sobolev [6], on which a Hélder continuous normal exists everywhere. Let B,
and B, denote the regions interior and exterior to S respectively. With respect to an
orthogonal Cartesian coordinate system whose origin, 0, is in B, , a point (z, , zz , x3) will
be denoted by x. The distance between two points x and y will be denoted by r(x, y)
(or simply r) while r(x, 0) = p; 7, represents an outward unit normal vector to S at y
and é; ,7 = 1, 2, 3, designates the unit vector along the x,-axis.

We wish to find the displacement vector field* u(x) which satisfies the scattering
problem defined by

i ux) = uv'(x) +u'(x)) x&SUB,,

ii) (A* + )u’(x) = 0, x€E B,,

iii) Tu(x) = 0, xE S,
iv) u’(x) satisfies an elastic radiation condition at infinity. Here
A* = pA + (A + p) grad div, 2.1)
T =2u :9% + M div + p(d X curl), (2.2)

where u and \ are the Lamé constants. A is the Laplacian operator and T is the stress
operator. u’(x) is a given vector field defined in B, \U S and satisfying (A* + w*)u’(x) = 0
in B, ; while u’ is an unknown vector field. w designates the frequency of vibration. In
order to give a precise definition of the elastic radiation condition at infinity, we introduce
the notations:

_1

u,(x) = ki grad div u’(x), u,(x) = kilg grad div u’(x) 4+ u’(x). (2.3)

These are the potential and solenoidal parts of u®(x) respectively which satisfy the
equations
(A + k*u,(x) = 0, curl u,(x) = 0, 2.4)
(A+ kHu,x) =0, divu,(x) =0, u,x) + i) = u'R),

with k° = o*/(A + 2u) and k,° = o’/u. In terms of u, and u,, the elastic radiation
condition at infinity is given by

* With the understanding that the harmonic time factor exp (iwt) is omitted.
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. a . . .
lim p('& - tk.u,) =0, lim ,o(i u, — 7/’(:2‘.12) =0 (2.5)
pm  \Op oo \dp

(see Kupradze [5]).
We shall also consider the case for w = 0, i.e. the boundary-value problem (p,)

defined by
1) u(x) = u'(x) + u,'(x),
11) A*uos(x) = 0: X E Ba )
iii) Tue(x) = 0, x E S,

iv) u,o°(x) is regular at infinity.
Notice that a real-valued function f: B, — reals is defined to be regular at infinity, if

<w, Vi=123 (2.6)

lim [pf(®0)] < ©,  lim [p 20 f(x)
p—® a:vt

o
(see Kellogg [4], p. 217). It is understood in this definition of regularity that f(x) is
differentiable for p sufficiently large. A complex-valued function is regular at infinity if
both its real and imaginary parts are regular. A vector function u(x) is regular at infinity
if all of its components are regular.

3. An integral representation. In this section, we shall reformulate the scattering
problem as a continuous integral representation which is valid everywhere in S \U B, .
We begin by applying the Betti formulas to u’(x). It can be shown that

%, fs {T(x, yu'(y) — T(x, )Tu'(y)} dS, = u'(x), x€ B,

= %us(x)’ xe S,
= 0, X e B,‘ .

Here I'(x, y) is the matrix of fundamental solutions of (A* + w’)u(x) = 0, which takes
the form:

3.1)

I‘(X, Y) = [Pi(k)(x) Y)] (32)

where

- _ 1 exp(@hky) 1 _ & <exp @) exp (ikﬂ))
o, y) = u Bs r w’ Az, AT, r r !

51“' = 1, k = ]
=0, k#j
and T, (x, y) is defined by

the Kronecker symbol,

I'(x,y) = [T,T“x, y)] (3.3)
where
ar,'®(x,y) A 3 exp (k)
.(Y) (k) = 9 i ) AL A) — 1
Tl F (x? Y) u 6ﬁy + )\ + 2# (ny el) ayk r
+ Gy - ) - xR Ck) 0 exp (k)

ik aa
Y; r iy r
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A similar result can be obtained for u’(x), if one requires that u’(x) satisfy
(A* + w*)u’(x) = 0in B,

irj:q (T:(x, yu'(y) — T(x, y)Tu'(y)} dS, = 0, xEB,,

= _%ui(x)) x e S, 3.4)
= _u‘(x)y X E Bi y
By adding (3.1) and (3.4), we obtain an integral representation u(x),
W@ + - [ T yue) ds, - uw,  xEB,
- ju®, xES, (3-5)
= 0, X e B,’ .
Similarly, we have, in the particular case w = 0,
1 o '. o ’
i | (B yu'o) - P NTee)) ds, = o, xEB,,
(3.6)

= —%uoi(x)y X C S)
- —w'®, xEB,

where T', and T are the corresponding T, and T' in the limiting case. Note that unit
vectors é, satisfy the equation A*u,' = 0in B, . Hence from (3.6)

1 o 4
Erfs I'\(x, )é. dS, = 0, x € B,
= _%ék ) X & S: k=1, 2,3 (37)
= ék y X e B,’ .
Consequently, we also have an integral representation for u(x) in the form:
1 o
Erfs I, (x, yu(x) dS, = 0, X € B,, (3.8)

= —juE), x&38,
Subtracting (3.8) from (3.5), we finally obtain the following integral representation for
x&E B,US:
i 1 hd 1 hd
w0 + 5 [ s D0 - wl 8, + o [ 16 y) T 9lue) S, = u).
(3.9

This integral representation (3.9) is continuous as the field point x approaches the
boundary and is valid everywhere on S.
Now, let us introduce the notation

1 o
Ly = — r(x, Y)[u(Y) - U(X)] dsy ’
i fs (3.10)

Lu

Lo + o [ (Fix9) = Tux, o) 5,
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and M (w)u = Lu — Lyu. Thus, the scattering problem may be expressed as the following
integral representation

(I — L)u = u'(x) (3.11)

where I is the identity matrix.

4. A Neumann series. We now seek a solution to the integral equation (3.11)
in the form of a Neumann series, and we shall show that this series converges for w
sufficiently small. In view of definition (3.10), the integral equation under consideration
forx &€ Sis

(I —Lu= (- L, — Mw)u = u'(x). (4.1)

Observe that the integral equation (I — Lo)u, = u,'(x) corresponds to the boundary-
value problem (p,) in Sec. 2. The inverse operator (I — L,)”' is known to exist for
Lyapunoff surfaces [5]. Hence Eq. (4.1) can be rewritten in the form:

(I — I — L) ' M@l = (I — L) 'u'(x). (4.2)

To this end, it remains to show that (I — L,)™'M () is bounded by one, for small w. One
recalls that if 4 is a bounded linear operator in a Banach space and if ||A|| < 1, then the
solution to the operator equation (I — A)¢ = f may be expressed by ¢ = D_,..o" A"f.
(See Kantorovich and Akilov [3], p. 173.)

We consider here the Banach space (C(S), || - |]), where C(8) is the vector space of
vector functions u in R®, the components of which are continuous complex functions
defined on S, and the norm of u(x), ||ul, is defined by

lful| = sup {lw;®)] :5 =1, 2,3}. (4.3)

For Lyapunoff surfaces, we have that L, : C(S) — C(S) and from the bounded inverse
theorem [2, p. 271), (I — L,)™" is a bounded linear operator mapping C(S) into C(S). The
components of the kernel of M (v) are continuous and hence M (w) maps C(S) into C(S)
(see (A.2)). Thus (I — L,) "M (w) is a bounded linear operator mapping C(S) into C(S).
Hence, if

1
[|M(w)]]| < M= (4.4)

then the solution to (4.2) may be expressed by
u(x) = Zo [ — L) 'M(@)]"I — Lo) 'u’(x). (4.5)
In the Appendix, it is shown that the inequality (4.4) is valid for small values of w

and it is further shown that a more explicit condition for w sufficient to guarantee the
convergence of the Neumann series is

1
I — Loy~

w’H(w) < (4.6)
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_ 1 N exp (k,d) exp (kzd)
Hw) = A(S){w(x 3w T 26 + 20 o a2 [()\# Fort T 2 ]}

Here A(S) is the surface area of S and d is the diameter of S.

5. The second fundamental problem. As in Sec. 2, we denote by B, and B,
respectively the regions interior and exterior to a closed Lyapunoff surface in R’. The
region B, is filled with homogeneous isotropic elastic medium. The second fundamental
problem states: determine the displacement vector u = u(x) that satisfies the equation
A*u + »’u = 0in B, , together with the boundary condition, Tu = f(x) in S, and the
elastic radiation condition at infinity. Here f(x) is the given stress vector which is
assumed to be smooth enough for whatever the existence of the following integral
involves.

This problem again can be reformulated as a continuous integral representation
which is valid everywhere in S \U B, . The integral representation in this case takes the
form, forx € S\U B, :

u@ = F@) + 3 [ D plue) - u@] dS, + 5 [ 0y - Fix ) as,
(5.1)

where
F@) = — [ T(x ) ds, .

This result follows immediately from (3.7) and the Betti’s formula for an infinite region
(see Eq. (3.1)). A comparison between (5.1) and (3.9) indicates that under the condition
(4.4), the solution of the second problem may be expressed by the same series (4.5) with
u‘(x) replaced by F(x).

Appendix: establishing a bound for ||M(w)||. In the following, we first give an
analytical representation for each of the elements in the kernel matrix of M (), which is
defined in (3.10), and then using this expansion establish an upper bound for the norm of
M (w). We recall that the kth component of the vector M (w)u, denoted by [M (w)u],, is
defined by

M@l = 5= [ [ty = B Do) ds, (A1)

Here [I', (%, y) — f‘l(x, ¥)l«; denotes the kjth elements of the tensor [T',(x, u) — f‘;(x, ]

which takes the form:
) A4 3<€;k'r—1>
Fi ) + (ny € ay’ r

e

_L_ . , a eik.r _ 1) i (eikgr _ 1)
5 + 2u @y L ( r By Iy r

with k.2 = &®/(\ + 2u) and k,® = &*/u. The term T';* (and T;*) is defined in (3.2) and
can be simplified so that
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P _pw s (1 exp (tky) a® + b’ 1) 1@ (exp (@)  exp (ikzr))
i d "\b* r 2a°0° v/ o 9z, Ox; r r

@ =b)er or1
2a°b>  dx; xer (A.2)

where a® = X\ + 2u and b® = . Using the series expansion

€Xp (’lklr) _ exp (1»]927') _ b i”+l[k1"+l _ k2n+2] rn
r r & (m+1)! ,

we obtain

o 1 exp (thyr) — 1
r, — I,% = 5, 3 p( ;)

» ,, iﬁs[bs};""b”_(.na'?zg(!n +2) { - 56% ga_xg L M}

and hence

[Ci(x, y) — Pu®, Pl = b3 az,, (M’:L)‘__l) + @ - &) a;:/,. (L(m:«r)__l)
i 05 () =
~eih R B )

Using this representation for the kjth element of the kernel matrix, we can establish a
bound for the norm of M (w). We shall show that there exists an H = H(w) such that for
allk = 1, 2, 3, |[M(w)u).] £ w’H(w) ||u|| and hence ||M (w)|| £ w’H (w). For simplicity,
we present here only the case for k = 1, since the analysis proceeds in the same manner
fork =

By the definition of [M (w)u], in (A.1) and the formula (A.2), it is easy to see that

[[M(wp],| < ;11_1‘/; [ur(y) — wy(x)| a—% (ﬂ(lk;_L—_l)

ds,

+ MT)\_-I—&;)/; [y - [u(y) — u@®)]]| ‘5%1 (E&P_(lk_;';)_—_1>‘ as,

Lf -y
+41r S'”Y el‘ k

+ w_f m m+1 bak m a3k2m](m + 2)
8

, &P ;ikz”') _exp (ik:r) — 1’ |Vr - [uly) — u@]| dS, (A.4)

m=0 a ba('m + 3)!
{2 (.,;‘;y [mr j; j,: ]( @) = u(®) — a%yr'"[ul(y) - m(x)]}] ds, .

Then by making use of the relation

. vy(exp (il:) — 1) _ l(ik expr(ilr) _exp (ulr) — 1)& )

r| < 2r

T2
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for any constant I > 0 and unit vector & one obtains the estimates for the first three
terms on the right-hand side of (A.4):

L[ o) - weo) [j (2280 1) 4, < IullE )

S PR 0 (exp (k) — 1 ul| M,
I + 2”)./; [y - [u@) — u@]| \ay( . )\ ds, < %\L—_{L_LWA(S), (A.5)

1 . . exp (ik;r)  exp (tk,r) — 1
41r[ Iy - 2] \tkz r r?

V- [ — u@]| as, < LBLE 4g)

where A(S) is the surface area of S. Also, from the inequalities:

_a_ m (yl _ xl)z _ m—1 _a_r m—1
m aﬁyr 3 mr o, < m(m + 1y
and
0 ar or m—1
AN LN = .
m aﬁyr oz, oz, = m(m + 1)r for k = 2,3,;
m=1,23, - ,itisnot difficult to see that the last term of (A.3) is dominated by

6w ||u|| )> b’k + &'k,

2 o m + 3)1 mm + Dlm +2) fs ™t ds,

3 exp (k,d)  exp (k2d>}
<g e |lull A(S){(x ot (A.6)
where d = sup, yes 7(X, ¥). Hence, it follows from (A.5) and (A.6) that

M (w)u]i] < o’H(w) ||ul] (A7)

where H(w) is defined by

_ 1 A 1 | 3 | exp (ki) exp (kzd)]}
He) = A(S){r(x Yo T a0+ 20 T T om [(x oy T (4.8)
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