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NOTE ON A PAPER BY ANDERSON AND ARTHURS*

By J. L. SYNGE (Dublin Institute for Advanced Studies)

It is interesting to examine in terms of the hypercircle the problem discussed by
Anderson and Arthurs. But it is illuminating to generalize the problem a little. General-
ization to n dimensions is trivial, so let us think of a plane with rectangular cartesian
coordinates x,. Subscripts take the values 1, 2, and summation is understood for repeated
suffixes. Partial differentiation is indicated by a comma, so that <£,; = d<t>/dXi .

Consider the partial differential equation

4>,a + > + C = 0, (1)
to be solved in a domain V with the boundary condition 0 = 0. Here C is any given
function of position and so are /, , subject to the condition that /, chi is an exact dif-
ferential, so that, if we define

F = exp J /,• chj , (2)

we have

F.i/F = . (3)
Thus (1) may be written

(F<t>.i),i + D = 0, D = FC. (4)
Consider a Hilbert space in which the point corresponds to a vector field p{ in V,

with the inner product

/ Ptfi'F clV (dV = dxi dx2). (5)

Consider two linear subspaces defined as follows: L' : p/ where (Fp/),< + D = 0;
L" : p/' where p/' = vti, the scalar v being arbitrary except that v = 0 on the boundary.
It is clear that the solution of the problem is the intersection of L' and L". Moreover L'
is orthogonal to L". To see this, take any Hilbertian vector lying in L', that is, the join
of any two points in L'; denoting it by q/, we have

(Fq,1)., = 0. (6)

Then the inner product of a vector lying in L' with one lying in L" is

J q/p/'F dV = J v.tFq/ dV = 0, (7)
by (6) and the boundary condition v = 0.
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Thus the gradient <£,, of the solution of (1) appears in Hilbert space as the unique
intersection of two mutually orthogonal linear subspaces L', L", and the method of
the hypercircle is immediately applicable. But to get a good approximation to </>,, (in the
mean-square sense) we need two sequences of Hilbertian points, one in L' and the other
in L", converging on the unique intersection. L" is relatively easy to deal with, because
we need only functions v which vanish on the boundary, corresponding to the trial
functions in Eq. (16) of Anderson and Arthurs. Their trial functions (17) are scalars
satisfying their partial differential equation (10) without boundary conditions. In the
hypercircle approach we are a little freer, because to get Hilbertian points in L' we
need only satisfy

(fPi').i + D = 0, (8)
again without boundary conditions. The best procedure here will depend on the form of
the functions F and D, but we might at least recommend finding some particular solution
of this equation (perhaps with p2' = 0), thus getting one Hilbertian point on L', and
then spreading out over L' by means of vectors lying in L'; these are to satisfy (6),
and so we might choose an arbitrary vector field wt and write

Fq/ = tiikwiik , (9)

using the permutation symbol (here it is pertinent that we are in a plane).
It is not suggested that the method of the hypercircle is superior computationally

to that of Anderson and Arthurs. It provides a different and more geometrical approach.
For an elaborate treatment of the hypercircle method, see [1], and for a brief account, [2],
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