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1. Introduction. Consider a periodic wave moving with constant velocity c from

right to left on the surface of an inviscid, incompressible fluid which is at rest at

infinity. The motion is assumed to be irrotational and two-dimensional. The bottom is

horizontal, and the depth of the undisturbed fluid is h.

If a constant velocity c from left to right is superposed on the fluid, the wave form

is reduced to rest in space, the motion becomes steady, and the velocity at infinity

becomes c from left to right. The motion of the fluid contained in one wave length will

now be studied.

Levi-Civita has shown in [3] that a wave of invariable form must have a vertical

axis of symmetry. Let the y-axis be taken vertically to coincide with this axis of symmetry,

and let the .r-axis be in the plane of the undisturbed fluid. The situation is shown in the

2-plane (2 = 2; + iy) diagram in Fig. 1. The wave length is denoted by X.

Much work has been done toward determining the free streamline for the above wave

(see, for instance, [7], [8], and [5], Chapter 14). The wave is determined by two dimen-

sionless parameters A/h and c2/gh where A is the amplitude of the wave and g is the

acceleration due to gravity. In [8] Wehausen and Laitone graphed the relationship

between A/h and c2/gh. (The result is actually a variation of one due to Littman [4].)

The graph is obtained by drawing the relationship using both the theories of cnoidal

waves and infinitesimal waves. The theory of cnoidal waves is accurate for values of

c2/gh near 1, while the theory of infinitesimal waves should be accurate for values of A/h

near 0. The lines were then smoothed in so as to pass smoothly from one theory to the

other. An envelope for this class of curves is then obtained by using results of the highest

wave.

In this paper we shall calculate the relationship between c2/gh and A/h by solving

the exact problem numerically. We do this by reducing the problem to one of solving

a nonlinear integral equation and then use a technique developed by Bueckner [1] to

solve this integral equation. The author used this same approach in [7] to calculate the

form of the free streamlines for the cases of finite and infinite depth. The technique is

a convergent technique and hence, yields accurate results.

The value of c (as in c2/gh) is unknown and does not appear in the Milne-Thomson

integral equation (as defined in [2]) with which we will be working. For this reason it is
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necessary to include the reduction of the problem to the integral equation. We do this

as briefly as possible in Sec. 2. In Sec. 3 we describe briefly the technique used to solve

the integral equation, and hence to calculate points on the graph. Sec. 4 is devoted to

a discussion of the results of our calculations.

I would like to thank Joseph B. Keller for suggesting this problem to me.

2. Derivation of the integral equation. As we mentioned above, to be able to

calculate the term c2/gh for a given wave profile, it is necessary to have at least a part

of the derivation of the integral equation. We shall give a very brief description of this

reduction (for more details, see [7]).

We shall map the region occupied by one wave length of the fluid onto a known region

in the Z-plane (Z = X + iY = re"). Determining the mapping function will lead to the

form of the free surface. Let the known region be 7? = {Z : r0 < r < 1 and — ir < t < w},

where r0 is between 0 and 1 and is yet to be determined. Let the corresponding points

in the two planes be denoted by the same letter. Denote this mapping by

z = F(Z). (1)

We map the crest C into the point (1, 0) in the Z-plane and the line CM into the

line CM in the Z-plane, which we take to lie on the X-axis. This function will map M2T2

and MxTx into t = w and — ir, respectively (see Fig. 1).

We note that a jump discontinuity is required when going from T2 to . This jump

discontinuity can be provided through a term of the form (i\/2ir) log Z, where the re-

mainder of the function can be written in the form of a Laurent expansion in R. Thus

it is sufficient for F to be of the form

F(Z) na±-i z'~ + S nh. Z""

Let

f(z) = it, anZ" (2)

t-.-K

z-plane

Fig. 1
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in R, where a_! = 0. Hence

'/-y 1 \ 1

(3)—— = F'(7) = —
dZ ( ^ 2tt | + /(Z)

The point Z = roe" must map into a point on the bottom of the channel so x — ih =

F(r0e"). In order to have the imaginary part of F(r0e*') be the constant —A, choose r0

so that = 0 and

r0 = exp ( —2ir/i/X). (4)

Thus we can express F as

F(Z) = £
Ztt

**+£££-I, (5)

where the d„'s are given in terms of the an's and are real.

If we consider the boundary conditions in the Z-plane, it is not hard to see that

the complex potential

ic\ . „
iv = log Z

■iir

satisfies the flow in the Z-plane.

Let Q(r, t) exp [id(r, t)] be the velocity at (r, t), where Q is a real function. Then

— dw/dz = u — iv = Q(r, t) exp ( — iO{r, t)) = c/( 1 + Zf(Z)).

So, if we let

1 + Zj(Z) = exp [T(Z)], (6)

then T can be expressed as

T{Z) = s(r, t) + id(r, t) (7)

where

c exp { — six, 0) = QO, t). (8)

Solving (6) for 2' yields

7'(Z) log (1 + Zj(Z)) = E bnZ",
n= — co

where the b„ are obtainable in terms of the an of Eq. (2). Since the velocity on the bottom

of the channel must be real, T(r„e'') must be real, and it is sufficient to let Z = re*'

and write

T(re") = c„ + £ cn(r'nZ" + r"Z"'). (9)
n= 1

On the surface of the fluid Z = e", so let s(l, /) = s(<) and 0(1, t) = 0(0- Then 9 will

give the direction of the tangent along the free streamline and s will give the fluid speed

through Eq. (8).

Since the surface is a streamline, Bernoulli's equation with constant pressure, Q\ 1, t)

+ 2gy = constant, must be satisfied, and hence
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(■d/dt)Q2 = — 2 g(dy/dt). (10)

Letting Z = e", Eqs. (3), (6) and (7) yield

Jt = S CXp ̂ + id^

= —^-es<"[cos 0(0 + i sin 0(0]. (11)

Equating the real and imaginary parts of Eq. (11) then yields

dx/dt = — (X/2ir)es(" cos 0(0, (12)

dy/dt = — (\/27r)es<!) sin 0(0- (13)

Then Eqs. (8), (10), and (13) yield

exp ( — 3s(t)) = (- + / sin 0(u) dwj (14)

where 1/n is the arbitrary constant of integration.

Thus we have established a relationship between s and 0. The next step is to obtain

another relationship between s and 0, and hence obtain an equation for just 0. We shall

do the next part in a briefer fashion than the proceeding work since all we need from this

point on is the resulting integral equation. We shall, however, need Eqs. (12), (13),

and (14) obtained above.

The next step is to calculate the coefficients in Eq. (9) in terms of s by considering

T on the free surface, i.e. for r = 1. With a fair amount of manipulation we can write T as

- i f,,(I)
1 - e"' - _ i A! sin VW +-gl dx

cos x + e" dx sin 1/2(t — x)J

■ r , sn — (t + x)

+ / s(x) — log —^ dx, (15)

sn — (t — x)
IT

where if is the half period of the Jacobi elliptic sine and the last integral is interpreted

as a Cauchy principal value. It can easily be shown that the first integral in (15) is zero.

Then integration by parts yields

W) = fZir

~K- /, \
sn~ (t + x)

s(x) log —JZ 

sn — (t — x)
TV

■ r sn— (t + x)

~ i* J S'^log ~it dx~ ^
sn — (t — x)

But the first term is just s(t), so equating the imaginary parts of Eq. (16) yields

0(0 = — I s'(x)K(x, 0 dx, (17)
ZlT J _7T

where K(x, t) = log [sn(K/ir)(t + x)/sn(K/w)(t — a:)]. This is the desired second relation-

ship between s and 0. Substitution of the s function from Eq. (14) then yields
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m _ i £ HJW K(^ t} dx
1 + n / sin 0(u) du

Jo

The symmetry of our functions then allows us to write this as

0(0 = £ I'   K(x, t) dx. (18)

1 + n / sin 6(u) gu
Jo

The above equation is the Milne-Thomson integral equation that will yield the

form of the free streamline for the problem described in the introduction. This was

solved by the author in [7] for the eigenvalue ^ and the function 9. (There will be a brief

discussion of this method in Sec. 3.) Once we calculate yu and 9, we use Eqs. (12) and (13)

to find the x and y functions (the y function is calculated only up to an additive constant).

Before we solve Eq. (18), we must choose the liquid depth h and wave length X.

These appear in Eq. (18) indirectly through the half period of the Jacobi elliptic sine K.

K is determined by the relationship q = exp [ — 4:irh/\] where q is the nome and equals

exp [ —irK'/K], Then, after we solve Eq. (18), we have h and we can easily calculate A

(.A = |y(w) — 2/(0)|). However, we do not have c. (Recall that we wish to graph A/h

versus c2/gh.)

We begin by noting that Eq. (14) yields

es<

^3 g\.

Eq. (12), along with the fact that a;(0) = 0, yields

" = (fl) (»+1 ™ #(">du) ■ <19>

x(t) = — ~ f e'(w) cos 9(io) du. (20)
Jjiv J o

Then Eqs. (19) and (20) and the fact that x(ir) = — X/2 give

f (-+ (o Jo

-1/3

sin 9(u) du) cos d(w) dw (21)
£ _ 3\ir2

gh 2 h

Thus if 9, X, h, and n are all known (and they will be), c2/gh can be determined by Eq. (21).

3. The numerical scheme. We next give a brief discussion of the numerical tech-

nique used to calculate the values A/h and c2/gh. The central problem was to solve

Eq. (18). This is done by letting u(t) = n sin d(t) and rewriting Eq. (18) as

u{t) = sin ~ r ^ K(x, t) dx
^ J o Cx ...

i + [ u(y) dy
Jo

= T{u). (22)

We then let u0 and /u0 denote initial estimates of u and n, let

_ (Mn-l , T(un-1))

_ lir^.oir ' }
(where (,) and || [| are the inner product and norm on L2), and then define the sequence

jUn\ by

un = finT(un-t). (24)
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Bueckner [1] developed this technique for the problem of calculating the free streamline

for the problem discussed in the introduction for a fluid of infinite depth. The author

showed in [6] that this technique was applicable also to Eq. (22). In [7] the author gave

the results of the solutions to this equation for h = 123.9378. In this work the author

solved Eq. (22) for many h values. Once we have obtained 6 values we can use Eq. (13)

to obtain y values (and then A is equal to |z/(0) — y(ir)\) and Eq. (21) to obtain the

value of c2/gh.

To obtain the outer envelope of curves given in Fig. 2 we consider the highest wave.

The method by which we calculated these values is to let w(t) = sin 8(t) and rewrite

Eq. (18) as

w(t) = sin J   K(x, t) gx = 7\(to). (25)

- + / w(u) du
n J0

n was then fixed at some large number and we considered the sequence \wn\ where

wn(t) = 2\ («>„_!). (26)

and w0 is the initial estimate. At this time there is no convergence proof for the sequence

defined in (26), but the numerical results indicate clearly that some sort of theorem

is possible.

Again, once we had obtained the 9 values, we were able to proceed as before to calculate

A/h and c2/gh.

4. Numerical results. The numerical results described above are presented in

Table 1 and Fig. 2 below. The table gives the number of the curve (with reference to

the graph), the ratio h/X (where we used X = IO71-), A/h, and c2/gh.

Six of the curves ((l)-(6)) in Fig. 2 are the graphs of A/h versus c2/gh for six different

values of h/\. Curve (7) is the graph of A/h versus c2/gh for the highest wave.

It should be noted that the region in the (A/h) — (c2/gh) plane that contains the

curves is bounded by three curves: curve (7), the curve associated with h/X = 0, and

the line A/h = 0. Curve (7) is the obvious upper bound for the region since it is asso-

ciated with the highest wave (and hence the wave with a maximum A/h) for various

choices of h/X. The line A/h = 0 is also another obvious boundary. This line can be

thought of being associated with the "flat" wave (110 wave) or the case of a fluid of

infinite depth. In either case the line is an obvious lower bound for possible values of A/h

(surely neither A nor h can be negative). The curve labeled h/X = 0 shows the relation-

ship between A/h and c2/gh for the solitary wave. It can be thought of as a wave with

infinite wavelength. It is clear that the line associated with h/X = 0 is a boundary of

the region (i.e. h/X surely cannot be negative). The curve for h/X = 0 in Figure 2 is the

curve

c2/gh = 1 + (A/h) - (1/10)(A//02 - (3/20)(A/h)3 + (9/400)(A/h)\

This is a second-order approximation to the relationship between c2/gh and A/h for the

solitary wave. For a discussion of this approximation, see page 711 of [8].

There are several facts that can be used to check the results presented in Fig. 2.

In [8] (page 660) it is shown that c2/gh can be expressed in terms of A and h as

c2/qh = —r tanh mh
'J mh

, , <2 2 8 + cosh 4mh ,
1 + A m — ̂ --r-4—7 b

8 sin mh
(27)
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Table 1.

Number (1) (1) (1) (1)

h/\ 0.6 0.6 0.6 0.6

A\h 0.005185 0.10763 0.14663 0.20252
c*\gh 0.265005 0.27643 0.28649 0.30699

Number (2) (2) (2) (2)

h/\ 0.3 0.3 0.3 0.3

A\h 0.01899 0.24156 0.27919 0.35717
c2| gh 0.50702 0.53863 0.555023 0.57781

Number (3) (3) (3) (3)

h/\ 0.2 0.2 0.2 0.2

A\h 0.01326 0.31778 0.36557 0.50237
c*\gh 0.67778 0.72578 0.74129 0.79721

Number (4) (4) (4) (4)

h/\ 0.15 0.15 0.15 0.15

A\h 0.02984 0.25816 0.36794 0.54365
c2\gh 0.78474 0.81952 0.85394 0.92950

Number (5) (5) (5) (5) (5) (5)

h/\ 0.13655 0.13655 0.13655 0.13655 0.13655 0.13655

A\h 0.01547 0.10796 0.30932 0.37796 0.46207 0.51817
c2\gh 0.81351 0.82062 0.86689 0.89129 0.92640 0.95260

Number (6) (6) (6) (6) (6)

h/\ 0.10632 0.10632 0.10632 0.10632 0.10632 0.10632

A\h 0.01676 0.29091 0.39328 0.43636 0.52072
c'\gh 0.88130 0.94167 0.98415 1.0043 1.04674

Number (7) (7) (7) (7) (7)

h/\ 0.6 0.39789 0.3 0.24926 0.21709

A\h 0.23327 0.344477 0.44240 0.50540 0.55230
c*\gh 0.34140 0.50250 0.65345 0.75077 0.82900

Number (7) (7) (7) (7) (7)

h/\ 0.2 0.18366 0.15 0.13655 0.10632

A\h 0.58037 0.60289 0.65985 0.67433 0.71924
c*\gh. 0.88053 0.92039 1.03836 1.07376 1.19664

Thus for A/h = 0 we see that

c2/gh = (1 /mh) tanh (mh). (28)

Thus for h = 6tt, 3tt, 2ir, 1.57r, 4.29 and 3.34, we see that c2 /gh = 0.2650, 0.5066, 0.6772,

.7810, 0.8098, and 0.8737, respectively. These points are also plotted on the graph in

Fig. 2. It should be noted that these points agree very nicely with the curves drawn

by the numerical data.

Also in [8] (page 712) we see by the theory of cnoidal waves that the ratio of the

maximum amplitude to h{A/h) for the highest wave when k = 1 (where k is the modulus

and is such that k2 = m) should equal 0.7143. This too is plotted on the graph and also

agrees with our numerical results.

The results represented in Fig. 2 agree closely with the results given in [8] for small

A/h and c2/gh near 1 (as they well should). Because of the method used to draw the
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c2/gh

Fig. 2. The graphs of A/h versus c'/gh for six different constant values of h/\ and of the limiting case

of A/h versus c2/gh for the highest wave. The numerical values are given in Table 1.

graphs in [8], we maintain that our graphs will be more reliable for the values "between"

shallow water theory and cnoidal wave theory.

There are no rate of convergence proofs for the numerical schemes used here. The

results indicate, however, the most convergence acted much like a geometric sequence

with ratio 1/2. This observation was made by observing many (all of the points that are

plotted and more) applications of the iterative scheme.
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