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Abstract. Sufficient conditions are given for the solution of the functional dif-

ferential equations with associated boundary conditions

CO

dy/dx = X) any(iinx), y{0) = 1,
n = 0

dy/dx = / a(u)y([iux) du, y(0) = 1.
^0

A discussion is also given of some possible solutions to the differential equations which

do not satisfy the boundary conditions.

1. Functional differential equations involving a parameter n of the forms

oo

dy/dx = X) any(n"x), 2/(0) = 1 (1)
71 = 0

and

dy/dx = [ a(u)y(iiux) du, y(0) = 1 (2)
*0

do not seem to have been considered so far. It is the purpose of this paper to obtain

some solutions for these equations together with sufficient conditions for their existence.

A short discussion will also be given of sufficient conditions for the nonuniqueness of

the solutions. It will be seen that a number of different types of solution to the system

(1) exist, and that analogous solutions exist to the system (2). Unless otherwise

mentioned, all quantities are real, and if the series aJ" converges with nonzero

radius of convergence r, its sum will be written A(t). A(t) may be termed the generating

function.

2. Before proceeding to solutions of the system (1) when the set \an} is arbitrary,

and of the system (2) when the function a(u) is arbitrary, it is worth noting the following

obvious solutions: if = 0, then a solution to the system (1) is y = 1.

Similarly, if /„" a(u) du = 0, then a solution to the system (2) is y = 1.

3. The obvious first form of solution to look for is a power series. When such a

series converges, it will provide a unique solution.

* Received October 15, 1971; revised versions received October 20, 1972 and June 13, 1973.
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Theorem 1. The power-series solution of the differential equation (1) is given by

y(x) =£f[ Ab-l)x'/M,
m=0 s=l

the empty product being unity whenever the right-hand side has a meaning.

Consider now the system (1) and look for a solution of the form

2/0*0 = £ ymxm/{rn!). (3)
m = 0

Note that y0 = y{0) = 1.

Substituting the relation (3) in the differential equation (1), it follows that

Zym+1x7(m!) = X>„ £y^m"xm/(rn!)
m=0 n=0 m=0

= ± ym ± an^xy(m\) (4)
771 = 0 71 = 0

= X) ymA(fj.m)xm/(rn\). (5)
771 = 0

If the radius of convergence r of the power series associated with A(t) is infinite,

the relation (5) is always valid. This will always be the case if A(t) is a polynomial.

If, however, r is finite, the relation will be valid when |/i™| < r for all positive or zero m.

The condition for this to hold is clearly |yu| < min (r, 1).

From Eq. (5) it follows, on comparing powers of x on both sides of the equation,

that

ym+1 = A(nm)ym , (6)

whence

ym = n .4 Ox-1) (7)
8 = 1

(the empty product being, as always, unity), and so

**) = i n ao,-v/(«d. (8)
771 = 0 8 = 1

The series on the right-hand side terminates at the term xv if A (//) vanishes where p

is an integer; furthermore, the series converges by D'Alembert's test if the ratio of the

modulus of the ratio of the (m + l)th term to the mth term is less than unity. This

condition can be written

lim
m + 1

A GO < 1. (9)

Clearly, if |>u| is less than unity, this is the case, and the solution is valid for all x, as

then lim„„„ A(/xm) = a0 . If |/xj exceeds unity, there will not be convergence if r is finite.

If the radius of convergence is infinite, there may or may not be convergence depending

upon A(t). There remain two cases to be considered. If n = 1, the differential equation

reduces to dy/dx = a,ny(x), which requires no further discussion. If n = —1. the

differential equation reduces to
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§; = X + Z) a2„-1y(-x).
ax n = 0 n = 1

This can be rewritten in the form

cfy/cfo: = py(x) - qy(-x). (10)

It can easily be verified that the solution of this under the given initial condition is

y = cosh (p2 — q2)W2x + {(p + q)/(p — q)} sinh (p2 — q)1/2x, p > q (11a)

= 1 + 2 px, P = q (lib)

= cos (g2 - p2)l/2x + {(q + p)/(q - p)|1/2sin (p2 - p2)1/2x, p < q. (11c)

It may be remarked that if the an and |m| are complex, the results given above for

|/i| > 1 and Ifil < 1 will still hold. If, however |/*| = 1 the problem is more complicated.

If fj = exp {i2wm/n}, where m and n are integers, it is not difficult to see that the dif-

ferential equation (1) assumes the form

^ = Yj Aty(x exp {2irit/n}), (12)

a solution to which can be found by writing

n— 1

V = 2] 'Jsi* exP f2^is/n}) (13)
s =0

and solving n simultaneous equations for the y, . If, however, n = exp [i2ir\\, where

X is irrational, lim^eo y(x exp (i27rXnj) does not exist and the sum of the infinite series

is not defined.

4. A power-series solution may also be obtained for the system (2).

Theorem 2. The power-series solution of the differential equation (2) is given by

«> m— 1

y(x) = E II a(sa)xm/(m!)
m = 0 s =0

(where 1 > n = exp {— a J > 0, a(p) is the Laplace transformation of a(u), and the

empty product is unity) whenever the right-hand side has a meaning.

Consider now the system (2) and write

y(x) = X ~0mXm/(rn!) (tj0 = 1). (14)
m = 0

Substituting in Eq. (2), it follows that

t w*7(™0 = f" a(u) E v^"xm/(ml). (15)
m = 0 *' 0 m = 0

On equating powers of x, it follows that

f a(u)iinm du rjm (16)
_^0

= a(am) (17)

Vm + l
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where a{p) = J0° a(w) exp {— pu\ du and n = exp ( — a). Thus

to — 1

Vm = n ®(aS)> (18)
8=0

and
CO 771 —1 1

y{x) = EII a(as)xm/(m!). (19)
m=0 8=0

The series (14) will converge, giving a unique solution of the differential equation, if

lim \(.t)m+1x)/{rim(m + 1)}| < 1,
TO—♦ CO

that is,

lim \xa(am)/(m + 1)| < 1. (20)
TO—» CO

A formula for the behavior of a(p) for certain types of functions a(u) has been given

by Doetsch [1], Suppose that a(u) is a regularly increasing function, that is a(u) ~

u&L(u) as u —> 0, where <3 + 1 > 0, and L{u) is a slowly increasing function, that is

lim (L(yu)/L(u)) = 1 (21)
u—»0

for all positive y. Then, under these conditions

a(p) ~ res + 1 )p-"-,L(p~1) (22)

for p —> oo. By using the result (22), the convergence condition (20) becomes

lim \xm~^+2)L{a-lm'l)\ < 1.
TO—» 00

It can easily be seen that the limit is in fact zero, and so there is convergence. It is

necessary for this that 0 < m < 1, as otherwise a (and a~ ) is not real and positive.

Thus if 0 < n < 1, the power series provides a solution to the differential equation

(2). If n = 0, the solution is

y{;x) = 1 + x f A(u) du (23a)
•'o

and if ix = 1, the solution is

y(x) = exp "fx /; Aiu) duj . (23b)

If 1 < At, the quantity /0" a(u)n"m du will increase indefinitely with m and there will

not be convergence. If n is not real and positive, and consequently the integral on the

right-hand side of (2) is not defined uniquely, the problem is not defined.

5. A solution of the differential equation (1) in terms of exponentials can also be

obtained.

Theorem 3. A solution of problem (1) is given by

y(x) = X) Ym exp {a0nmx}, (24)
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where Ym is defined as the coefficient of tm in the power-series expansion of Y

Y(t) = n {A(m')M(ms0} (25)
s =0

whenever |ja[ < 1.

The way this solution is obtained is as follows. Look for a solution of the form

y(x) = X Ym exp {anmx} (26)
m = 0

where the Ym are functions of n and a is to be determined. On substituting the expression

(26) into the differential equation (1), it will be necessary, if the solution is of the form

(26), for the following equation to hold:

X) anmYm exp {aiimx} = X) an X Ym exp {anm+nx\. (27)
m = 0 n = 0 m = 0

Equating terms in exp {afim+nx} in Eq. (27), there follows the recurrence relation

m

anmYm = XI am„,Ys , 0 < m. (28)
8=0

Putting m = 0, it follows that

a = a0 = A(0). (29)

Suppose that

Y(t) = ± Ymtm. (30)
m = 0

The relation (28) is equivalent to the result

a0Y(t) = A{t)Y{t). (31)

From Eq. (26), it follows that

y{ 0) = I]Ym= F(l). (32)
TO = 0

Thus the solution of the differential equation (1) is given by the solution of the functional

relationship (31).

The solution of the functional relationship (31) will, however, be indefinite by a

factor B(t), where

B(fjt) = B(t). (33)

If ju = exp (3, it is easy to see that B is of the form

B(t) = J bnt(2'in)/?. (34)
n = — co

This, however, is not a power series in t, except for the trivial case B(t) = b() . Thus,

the solution of the relation (31) as a power series will be unique, apart from a constant

factor which can be taken so as to make the solution satisfy the initial condition
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2/(0) = 7(1) = 1. (35)

A formal solution of the relation (31) is given by

Y(t) = b0 n {aoMOi'01 (36)

and so

2/(0) - bo n {ooAKm')}. (37)
«-0

Using the condition (35), it follows that

7(0= nU&OM&i'OI. (38)
a = 0

If |/j| is less than unity,

lim A(n't) = lim AO*') = A(0) = a0 . (39)
«-»» «—»to

It may be verified that this infinite product converges, for the sth term is, if s is large,

given to the first order by

(A(0) + A'(0)m*)/{A(0) + A'(0Vt\ = 1 + {A'(0)/A(0)U*(1 - t), (40)

as / will be small. The convergence of the infinite product will depend on the con-

vergence of the series whose sth term is

{A'(0)/A(0)}m*(1 - t). (41)

This is the sth term of a geometric series, and as |/u| is less than unity, the series converges.

Thus, if |/u| is less than unity, the generating function Y(t) can be determined uniquely,

provided that the series (34) converges. This result will hold, in fact, even if n is complcx.

6. It may be shown that a solution to problem (2) analogous to that given in

Sec. 5 for problem (1) is not possible. If the possibility of a solution of the form

y(x) = f i}{t) exp {Pti'x} dt (42)
Jo

where /3 is to be found, be considered, then

/»00 CO p CO

/ /3^'tj(0 exp {Pn'x} dt = / a(u) / ij(t) exp {/3ju1+ua,-} dtdu. (43)
J 0 J o J o

Writing t + u = w, it follows that the right-hand side of (43) becomes

/»CO nW

/ exp {Pnwx} / a(u)i){w — u) du dw. (44)
Jq J 0

t and iv are dummy variables and so it follows that for a solution of the type (42) to be

possible,

nW

Phwtj(w) = / a(iv — u)rj(u) du, (45)
Jo
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where a property of the Faltung has been used on the right-hand side. Writing n"rj(w) =

F(w) and n~"a(w — u) = K(w, u), we can rewrite Eq. (45) as

f*W

/3F(w) = / K(w, u)F(u) du. (46)
Jo

P is as yet unspecified, and would be the eigenvalue of the system defined by Eq. (46).

This, however, is a Volterra integral equation with a regular kernel and has no eigen-

values [2], It follows therefore that a solution of the type (42) does not exist.

7. It is also possible to obtain solutions in terms of descending powers of x. Such

series will in general be asymptotic rather than convergent.

Theorem 4. A formal solution of the differential equation (1) without any boundary

condition is given by

oo ( n ^ —1 c—n

r(c - w + l)71 = 0 V 8 = 1

where £ is a zero of A (t) and c is defined by the relation £ = n", whenever the expression

is meaningful.

Consider now the possibility of a solution of the differential equation (1) of the

form

y = tiZn r(c - n + 1) ' (47)

where c is as yet undefined. If c is a positive integer the series will terminate and there

will simply be a power series of the type discussed previously:

in = f* a""1
dx r(c — n)

<«>
n = 1

y(p-nx) = £
SnM r(c - n + 1)

The differential equation (!) now assumes the form

y   X°~n y y Zn^C'n)XC~n

hx Zn~x r(c - m + l) h ttm h r(c - n + 1)

m(c — n)

For Eq. (49) to hold,

Thus, if £ is a zero of A(t),

- 5 _%+!)• (49)

0 = A(nc)z0 , (50)

= A(nc~n)zn . (51)

, = LUteO'V (52)



452 LL. G. CHAMBERS

and so an asymptotic solution is given by

-i

' - * £ illA(e* 7 w
where

£ = M ■ (54)

The ratio of the nth to the in — l)th term is given by

(c - n + 1 )/{xA(£n~n)}. (55)

If |ju| > 1, this behaves for large n as —nxA(0), the nth term behaving as

(— l)nn\/{xA(0)}", and the series is asymptotic. When |/u| < 1, the behavior of expres-

sion (55) is not so easily determined.

Suppose that p is the radius of convergence of the series ^.-o" aJ"- Then Eq. (51)

can only be meaningful so long as |mc"| < p, i.e. |£| |m|" < P- Suppose that now N is

the positive integer such that

i.r > wp > i.r. (56)
Then the relation (51) will only be meaningful if zn = 0 for n > N, and in this case the

series terminates. If, however, the series ^n=0°' ant" is convergent for all t, then the

ratio (55) will depend upon the behavior of A(t) for |<[ large. This will depend upon the

phase of t and every case must be discussed separately, the outcome depending upon the

phases of £ and p.. When p. is real and positive, it will be the phase of £ that will be rele-

vant. It should be noted that this method of solution will give rise in fact to an infinite

set of possible solutions. For Eq. (54) has the infinite set of solutions for c given by

log £ = c log n — 2irpi where p is an arbitrary integer; that is,

c = (log £ + 2irpi)/(log ti). (57)

Thus the series of Eq. (54) will in general involve complex c, the value of the series will

be complex, and both the real and imaginary parts will provide solutions. This phe-

nomenon will occur with a number of other solutions discussed in this paper and will

not be mentioned again.

8. Theorem 5. A formal solution of the differential equation (2) without any

initial condition is given by

y(x) = X) i II a(i" + s loS m)
r(/3 - n + 1)

where a is the Laplace transform of a, f is a zero of a, and /3 is defined by the relation

f = —/8 log /j, whenever the expression is meaningful.

Consider now the possibility of finding a solution of the form

y = 5 q" r(0 - n + 1) (58)

to the differential equation (2). It is not difficult to see that substituting the expression

(58) into (2) gives the relation

t rw _C+ „ - i [ r/"„ +1) ■ (59)
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(59) holds when

0 = f a{u)vS
.Jo

du qo (60)

and

[ a(uV{'~n)
y o

du qn ■ (61)

If we write n = exp {log n], the relations (60) and (61) become

0 = o(-0 log M), (62)

g„_! = a(n - 0 log n)qn , (63)

where a denotes the Laplace transform of a. If f is a zero of a, the recurrence relation

(63) can be written as

qn-x = a(f + n log n)qn (64)

and the formal solution is given by

9» = Qo fl La(f + s log n)]~\ (65)
8 = 1

y(x) = q° 5 [fi "(r + S l0g M)] Tip-n+1) (66)

The ratio of the nth to the (n — l)th term is given by

(c - n + 1 )/[xa(n log /x + f)]. (67)

As before, it is now necessary to determine the conditions under which the solution

exists.

The first point which arises is the condition that a(f) exists. This is equivalent to

the statement that there exists a number such that /0" a(u)Juuf3 du exists and has value

zero. The cases 0 < n < 1 and ^ > 1 require separate consideration. If ^ > 1, log n is

positive, and so n log n + f > f always. Now the Laplace transform

Kv) = f e~"Kf) dt

either for all p or for all p such that Re p > some real number. This depends upon the

nature of the function f(t). Thus if a(f) exists, so also does d(n log /z + f). Using the

formula (22) for the asymptotic behavior of a(p) for large p, it follows that

a(n log n + f) ~ r(/3 + 1 ){n log n + f)"3_IL([n log n + f]"1), (68)

where /3 + 1 > 0, and the expression (67) becomes asymptotically equal to

(c - n + 1 )(n log n + ^y+1/{xT(fi + 1 )L(n log n + f]"1.

The behavior of this is effectively

—n8+2(log nY+1/x {T(/3 + 1)L(0)}. (69)

It follows therefore that the series (66) can never converge, but is asymptotic. If, how-

ever, 0 < fx < 1, and so log ^ is negative, the previous analysis does not hold. If, on the

one hand, a(u) is a function whose Laplace transform is defined for all p, the recurrence
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relation (61) is always meaningful and the behavior of the series (66) can be determined

for each individual function a(u). If, on the other hand, this is not the case, there will

be a value of N of n such that Jo" a(u)/i"<|3~'V) du exists and J0" a(u)n"(P~rf~l) du diverges.

The recurrence relation (61) thus implies that qn vanishes for n > N + 1; that is, there

are only a finite number of terms in the series.

9. Formal solutions to the equations can also be obtained in terms of a set of

generalized functions defined as follows. Let

*■(*> = ?(^TT)H{x) (Re a ^ 0) (70)

where H(x) = 1, x > 0; = f, x = 0; = 0, x < 0; and let 4>a(x) be defined when a has

a negative real part by as many applications as are necessary of the recurrence relation

4>a'(x) = <l>a-i(x). (71)

This recurrence relation is clearly satisfied for Re a > 0 also. If a is an integer n, then

(1>n(x) = (x /n\)H{x), n > 0

5<1_n>(x), n < 0, (72)

where 8m(x) is the mth derivative of the delta function. A further property of the {<j>a}

is that

4>a(\x) = \"<pa(x). (73)

Theorem 6. A formal solution of the differential equation (1) without any bound-

ary condition is given by

y(x) = Y. jll s)| <Pc-n(x)

under the same conditions as in Theorem 4.

The proof is almost identical with that of Theorem 4, and will not be given here.

Theorem 7. A formal solution of the differential equation (2) without any bound-

ary condition is given by

2/0*0 = I fla(f + » log m) W>p-» 0*0
n = 0 I 8 = 1 )

under the same conditions as in Theorem 4.

The proof is almost identical with that of Theorem 5 and will not be given here.

Although the coefficients in the series of Theorems 4 and 6 and Theorems 5 and 7

are respectively the same, the nature of the series given by Theorems 6 and 7 are dif-

ferent from those given by Theorems 4 and 5. The series given by Theorems 4 and 6

are in general infinite series in descending powers of x, and are valid for positive or

negative x. The series given by Theorems 5 and 7 have a zero value for negative x,

and very sharp singularities at the origin.

10. The differential equation

^ = 2/0*0 + ay(ux) 2/(0) = 1 (74)
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occurs, when 0 < n < 1, in the problem of the dynamics of a current collection system

for an electric locomotive [3]. Apart from the two obvious cases where n = 1 and a = 0,

two other cases can be solved by inspection. If a = — 1, y = I and if ^ = — 1,

y = cosh (1 — ax)1/2 + | — sinh (1 — axfn. (75)
1 — a

The generating function is 1 + at. The power series solution for Eq. (74) in the general

case follows from Sec. 3 and is

y = Ezn II (i + <V_1). (76)
ttl = 0 ln • 8 = 1

The condition for convergence is

lim
x

(1 + a/i™ ')
m + 1

If |m[ I; |1 + tt/x™ '| < 1 -(- |a| and

lim x(l + an""1)
m-"° m + 1

If H > 1,

1 + V~'

< 1.

= 0

m + 1

Thus the power series converges for |ju| < 1, and diverges for |ju| > 1. If a solution of

the form ym exp {/j.mx} is looked, for the recurrence relation becomes

= Vm + aym-l ■ (77)

This can be solved simply, and it is not necessary to use the result of Sec. 3:

ym(vm — 1) = aym-1 (78)

and so

Thus

m -i

«■ - '■ n ^.--y m

00 rn -J

Z n 77;^"nam exp
y = m'° 7. , j. s  (80)

zn
0 .-1 (ft' — 1)

This solution is clearly that which would be obtained by looking for an expression in

powers of a, the division being necessary to make y(0) = 1. The convergence criterion

is again given through D'Alembert's test. The ratio is given by

{exp {(Mm+1 - />}}•

1
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If |/u| < 1, the ratio is —a and there is accordingly convergence if \a\ < 1, and diverges

if |a| > 1. If \n\ > 1 the ratio is infinite, and the series does not converge.

Consider now the differential equation

dy/dx = y{x) - tx~vy(tix) (81)

This is a special case of Eq. (74) with a = — n". Look for a solution of the form

co p—n

V = 5 9n nV- n + 1)' (82)

The series terminates if p is a positive integer. (The same is true of the solution given

by the series (76).) It is easy to see that they are effectively the same solution, and will

be valid for all values of p and x. Substituting the expansion (82) into the differential

equation (81), it follows that

co v—n co i)—n co n—n
■y* X    y* X X _

h 9n~l r(p + n - 1) " h gn Tip - n + 1) h Qn T(p - n +1) M '

Comparing terms in xv~n, it follows that gn-1 = g„( 1 — n~") and so

9n = 9o fl (1 - M
s =0

g0 represents the "scale" of the solution and may be assumed unity. (It is fairly easy

to see that the initial condition y{0) = 1 is not possible unless p is a positive integer.)

The D'Alembert ratio is

x~\p — n) ^1 —(n+1)
1 — IX

If |/i[ > 1, this behaves as x~\p — n), and so there is divergence. If |/z| < 1, this behaves

as x~x(p — n)nu+l) and so there is convergence. Finally, a formal solution of Eq. (81)

in terms of the infinite set of functions <l>a(x) defined by Eq. (70) will give rise to a series

with exactly the same coefficients:

y - End- m"*)"V,-(»). (83)
n=0 s=l

It will be observed that all the different methods of solution for the differential

equation (74) discussed here give infinite series which converge when |/t| < 1. It seems

impossible to find solutions which converge for |/x| > 1. This is presumably linked up

with the fact that the solution is not unique for |/i| > 1. A fairly full discussion of the

differential equation (74) has been given by Kato and McLeod [4], There is, however,

no overlap with the treatment here.

References

[1] G. Doetsch, Theorie und Anwendung der Laplace-Transformation, Springer, Berlin, 1937, 202

[2] V. I. Smirnov, A course of higher mathematics IV, Pergamon, Oxford, 1964, 136

[3] L. Fox, D. F. Mayers, J. R. Ockendon and A. B. Tayler, J. Inst. Maths. Applies. 8, 271 (1971)
[4] T. Kato and J. B. Mcleod, Bull. Amer. Math. Soc. 77, (1971) 891


