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1. Introduction. In the Fourier-series expansion of a periodic solution of a non-

linear ordinary differential equation it is often the case that only the components of

fundamental frequency have significant amplitude. The principle or method of harmonic

balance is that an approximate solution of first-order accuracy is obtained if only the

fundamental component is considered, and this solution is adjusted so as to satisfy

all terms of fundamental frequency arising in the equation. This is equivalent to re-

placing the nonlinear equation with a linear equation having the same solution to a

first-order approximation (i.e. the method of equivalent linearization). For a discussion

of these matters see, for instance, the books by Cunningham [3, Ch. 6] and Kryloff

and Bogoliuboff [4, Ch. V],

In this paper we study second-order differential equations describing a pendulum

or nonlinear spring" with possibly a periodic driving term, and we use the first Galerkin

or modified Galerkin approximation to initiate our search for a nearby periodic solution.

Then, using techniques of functional analysis developed by Cesari (see [2] for a com-

prehensive summary of this approach including subsequent work of Hale and others),

we show that a certain map associated with the differential equation and the Galerkin

approximation has a fixed point. Finally, by studying the associated determining equa-

tion, we can show that the fixed point is a periodic solution of the differential equation

and lies in a neighborhood of the first Galerkin approximation. More important, the

diameter of the neighborhood can be determined and so error bounds on the difference

between the first Galerkin approximation and the actual solution can be obtained.

2. The class of equations. We consider the class of second-order scalar ordinary

differential equations of the form

x + g(t, x) = 0 (2.1)

(or x + g{x) = 0 in the autonomous case) where g is defined for \x\ < A, — <*> < t < <»,

and for each x is integrable on [0, T] and is T — 2ir/o> periodic. We assume that the

following symmetry properties are satisfied:

g(-t, -x) = —git, x), g(j + t, x) = g(^ - t, xj-
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Hence a periodic solution, if it exists, will have the Fourier series expansion

x(t) ~ 22 k; si11 (2j + 1 )ut.
i-0

Furthermore, we assume that g(t, x) has the decomposition

git, x) = g0(x) + R(t, x) + S(t)

where

(a) g0(x) = <j2x + [a</(2; + l)!]x2,+1, a > 0, |x[ < in the autonomous

case we assume g0(x) > 0 for x £ (0, A],

(b) R{t, x) is continuous for \x\ < A, — °° < t < <*>, and

^ ®)' - (2T+ljT 'x'2!+I' -co<t<co>

for some integer Z > 2/c — 1; in the autonomous case the same condition applies

to R(x), and

(c) S(t) ~ A2i + 1 sin (2j + l)o>t.
1-0

Finally we assume that g(t, x) is uniformly Lipschitzian with respect to x with Lipschitz

constant L for \x\ < A, — °° < t <

3. Some associated operators and a norm. Let Sc be the Banach space of all con-

tinuous functions x(t), — °° < t < T-periodic with T = 2t/co satisfying the sym-

metry conditions x{t) = — x(-*t), x{T/4 — t) = x(T/4: + <), and with norm ||a;|| =

max |a:(<)|- Every element in Sc will then have a Fourier-series expansion

co rT
x ~ 22 c2'+i sin (2'c + l)co£, c„ = - / x(s) sin ncos ds

A: = 0 7T Jo

and we define the following operators from Sc into itself:

Px = Ci sin ut, Hx = — 22 roi " s^n (2fc + l)co£.
T 1JU

Theorem 1. (a) P is a bounded, linear, idempotent operator and ||P|| < 4/ir;

(b) H is a bounded linear operator which commutes with P and ||//|| < 7r/2co2;

(c) PH(I - P) = 0.

Proof: Obviously P is linear and idempotent, and from the expression for c: it

follows that

4
|sin cos | ds = - | |a;|

7T
M <^||x|| [

IT J0

which proves (a). Obviously H is linear and commutes with P; also

\\Hx\\ < co-2(|Cl| + |fl + |li+ •••)

and |c„| < 4/-7T ||x|| for all n, so result (b) follows from the fact that 22*-o" (2/c + 1)~2 =

ir2/8. Part (c) is straightforward.

It is clear that H (/ — P) is a linear operator in Sc and by the same type of reasoning
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as in (b) above it is not hard to show that \\H(I — P)|| < (4/irco2)[7r2/8 — 1] = 0.29755

co~2. But because of the low-order approximation intended, we will need a much better

estimate of the bound ||H(I — P)||, which we denote by kc .

For x in Sc ,

Hx =f da f x(l3) d/3,
Jo J T/4

and since Ci = (4co/n-) f„T/i x(t) sin «t dt and H{I — P)x = Hx + cioT2 sin wt, then

r-T/i

y(t) = H(I - P)x = / Kit, 0)x(l3) d(3
Jo

where

4
K(t, = — 0 H   sin wt sin co/3, 0 < /3 < t < T/4,

TTCO

4 .
= — t -\ sm co< sin to/3, 0 < t < /3 < T4.

7TC0

Letting ut = £, co/3 = y,X(£) = x(£/u), Y(£) = ?/(£/«), we obtain the equivalent expression

Y(Q = CO-2 f " m, V)X(V) dr,
Jo

where

4
l) = — ̂  ~ sin £ sin r\, 0 < t] < £ < tt/2,

7T

4 .
= — £ H— sin J sin 77, 0 < £ < y < ir/2.

7T

By a standard argument (e.g., see [5, pp. 83-84]) we infer that

\\H(I — P)|| = kc = co_2A:o = co-2 max f |K(£, 17)! dy
0<£<ir/2 Jo

and we must now compute k0 .

An examination of the kernel 7v(£, r;) in the square [0, tt/2] X [0, ir/2] shows that

it vanishes only on the £ and 7? axes and on the curves

" = Sin" (4 sill) 0 ^ ^ 1 Sin_1 (l) ^ 17 ̂ */2'

-1

\4 sin 77/ '
£ = sin ' > sin ' (|J < ? < t/2, 0 < V <1

where £ is the solution of tt/2 = sin-1 (V/4(£/sin £)). For any value of £ one can compute

the corresponding points on these curves (where K changes sign) and then explicitly

describe |/?(£, 77)1 and its integral. This was done for a £-mesh width of ir/2 X 1(T2 on

an IBM 360 and shows that the maximum value is obtained when £ = ir/2 and k0 =

0.14454; hence kc = 0.14454 uT2.

4. The first Galerkin approximation. The equation giving the first Galerkin ap-
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proximation of a '/"-periodic solution to the differential equation (2.1) is

2 rT
u{a) = ^ / [ — aw2 sin cat + g(t, a sin wi)] sin ut dt = 0

1 J o

where T = 2-ir/u. From the decomposition given for g(t, x) we can write this as

u(cl) = —aw2 + i41 + S + p = 0

where Ai is the first Fourier coefficient of S(t) and

9 rT 2 fT
S = £ / fifo(a sin co<) sin cot dt, p = -= R(t, a sin coi) siffwt dt.

1 Jo * *'o

Noting that |p| < 2a; |o|2! + 1/(2Z + 1)!, we consider instead the modified equation

Uo(a) -- — a«2 + A] -f- 2 = 0,

and expanding g0(a sin ut) into a trigonometric polynomial and performing the required

integration gives

v 2 j + 1

u0(a) = — aco2 + Aj + cr2a + 2 ^ ~~- 0. (4.1)

We call this the modified Galerkin equation and our first Galerkin approximation is

xo = x0(t) = a sin ut where a satisfies (4.1). For convenience we assume 0 < a < An < A.

In the autonomous case A! = 0, and then (4.1) defines o> = co(a) satisfying

"2 = + S jl (j + 1)! (2) ' (4-2)

and if a ^ 0 then for |a| sufficiently small the right side of (4.1) is positive so w(a) is

defined and the first Galerkin approximations are x0 = x„(t) = a sin u(a)t.

If a = 0 then we observe that

\g(x) - g0(x)\ < I^!2! + 1

and if bf = a,/(2j + 1)! and bQ is the first nonzero b, then we obtain the estimate

|g(x) - bax2a+3\ < m |6„| |x|2<,+3 D(A)

for 0 < x < A, where D(A) is a polynomial in A and m = max (|6,-|/|^|), j > q. For

sufficiently small B, 0 < B < A, g(x) will have the same sign as bQx2a+1 for 0 < x < B,

and since we assumed g(x) > 0 for 0 < x < A, this implies bQ > 0; so we can solve

(4.2) for u(a) for any |a| sufficiently small, say for 0 < a < A0 < A. This will be im-

plicitly assumed for the autonomous case in the following discussion.

5. The existence of a fixed point. Let Sc = {x | x <E Sc , ||x|| < A \ and let the

operators g, F and $ from Se into Sc be defined by

gx = g(t, x{t)), Fx = ~H(I - P)gx,

3x = Px + Fx = Px - H(I - P)gx.

Given any number b such that 0 < b < A0 , let xb = xb(t) = b sin wt (or b sin u(b)t

in the autonomous case) and define A(t, b) = H(I - P)gXh . Given our first Galerkin



FUNCTIONAL ANALYSIS AND THE METHOD OF HARMONIC BALANCE 461

approximation x0 = xa it) = a sin a>t (the dependence of a> on a in the autonomous case

is implicitly understood), let c, d > 0 fee two constants such that 0 < c < d

and 16 — a\ < c. We can assume that Q < a + c < A„ by adjusting A„ if necessary.

Then define

Scb = \x | x £ Sc , Px = xb , \\x — £o|| < d}

and Sc is nonempty since it contains xb, it is a complete metric space, and if a + d < A

then Scb C Sc since x £ Scb implies ||a:|| < \\x — x0\\ + ||x0|| < a + d.

Theorem 2. Suppose kcL < 1 and there exist constants c, d satisfying 0 < c < d,

a + d < A and \b — a\ < c where xb = b sin ut is given. Furthermore, suppose

c + 7c < (1 — kcL)d (5.1)

where y0 = max ||A(<, a)||, |a| < A0 . Then $ maps Scb into itself and is a contraction;

hence it has a unique fixed point y. This fixed point satisfies

||2/ — aSfc|| < kcLd + yc < d — c. (5.2)

Proof: For x £ Scb let y = Qx = Px — H(/ — P)gx and since Py = Px = xb

and A (t, a) = H (I — P)gx0 we have

\\y - x0\\ = ||x6 - x0 - H(I - P){gx - gx0) - A(t, o)||

< l|x6 — x0|| + ||H(I - P)|| ||gx - gx011 + ||A(<, a)11

< \b — a| + kcL ||x — .Toll + yc < c + kcLd + yc < d,

and so $ maps Sj' into itself, and it is certainly continuous. If yx = $x, , y2 = $x2 then

\\Vi - 2/2II = ||H(I - P){gxl - gx2)\\ < kcL ||xi - x2||

and kcL < 1 implies $ is also a contraction. Hence by Banach's fixed-point theorem it

has a unique fixed point y. Finally we note that y satisfies

\\y - xb\\ = |\—H(I - P){gy - gx0) - A(t, a)||

< kcLd + yc < d — c,

and so our conclusion follows.

We observe that since the fixed point y £ Scb of $ satisfies y = Py — H(7 — P)gy

then it also satisfies y = Py — (/ — P)gy or equivalently

y(t) + g(t, 2/(0) = P(y(t) + g(t, 2/(0)) = U(b) sin a>t.

Since 2/(0 ~ b sin wt + 2>-i" b2i+1(b) sin (2j + 1 )ut and g(t, 2/(0) ~ )32i + 1(6)

•sin (2; + l)cot, we see that if

U(b) = -co26 + (9,(6) = 0 (5.3)

then y is a ^-periodic solution of the differential equation (2.1).

Eq. (5.3) is called the determining equation and we must show there exists a number

b such that \b — a| < c and which satisfies (5.3) to complete our proof of existence.

6. The solution of the determining equation. Letting xb = xb(t) = b sin ut as

before, suppose g(t, xb(t)) = 2i-o" sin (2j + l)w< and then
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u(b) = ^ [ [xb(t) + g(t, x6(0)] sin wt dt = -w26 + &(6).

It follows that

117(6) - u(b)\ = 1/3,(6) - fr(6)| = ||P[g(t, y(t)) - g(t, x6(i))]||

<- L \ \y — xb\\ < - L(kcLd + yc).
7T 7T

Furthermore, we have

u<}>> = [-fto2 + A, + <r26 + 2 £ (|)

+ [!/>' , 6 sin wt) sin cot dij = w0(6) + jj(6)

where u0(a) = 0, and

W6)l < f (2ZI+T)T f0 lsmw<l dt

«,A02
/i /4 21 + 14 a,A0

- X [1-3 ••• (21 + l)]5 11 •

Since we can solve for the expression a2 — co2 from the modified Galerkin approxima-

tion (4.2), we can obtain the expression

a\2' fb

2

"]

and from this obtain expressions for u0l = u0(a — c) and u02 = u0(a + c). We assume

these have opposite signs, which will certainly be the case if a is a simple root of u0(a)

since

u0(a ± c) = ± cu0'(a) + o(|c|),

and let Q = min (|m0i|, |w02|).

Theorem 3. Given the assumptions above, suppose that

V < Q (6-1)
and

4
- L(lccLd + 7e) < Q — v- ,q 2)

Then there exists a number b such that |6 — a| < c and b satisfies the determining

equation U(b) = 0.

Proof: We need only show that U(b) has opposite signs at the points b = a ± c.

Assume that u0i < 0 < u02; hence u0(a — c) < —Q<0<Q< u0(a + c) and u(a ± c)

= u0(a ± c) + i)(a ± c). Then for b = a + c

17(6) = Uo(b) + (U(b) - u(b)) + 77(6) > u0(b) - \U(b) - u(b)\ - v

> Q — - L(kcLd + yc) — v > 0
7T
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and in a similar manner one can show U(b) < 0 for b = a — c, which gives the desired

result since U(b) is continuous.

Corollary: Under the assumptions given and the hypotheses of Theorems 2 and

3, the fixed point

y ~ b sin ut + b3 sin 3ut + • • •

of the map XI in Scb is a T-periodic solution of (2.1) where b satisfies |6 — aj < c and

II?/ — Zo|| < d, ||y — xb\\ < kcLd + yc .

Here x„ = x0(t) = a sin wt is the first Galerkin approximation and xb = xb(t) = b sin ut.

7. An example. We consider the differential equation

x + sin x = — J sin t (7.1)

and let

g{t, x) = x — | x3 + x5 + R(x) + | sin t.

Then L = 1, a1 = w2 = 1, Ax = g, g0(x) = x — fx3 + i^^x5, kc = 0.14454 and for

\x\ < A, |i?(x)| < A7/5040. The modified Galerkin equation is

M°(a) = (32 - 24a3 + a5) = 0

which has a root a = 1.12053. Since we assume 0 < c < a this implies Q = |u0(a — c)|,

and substituting gives

Q = 0.42979c - 0.34692c2 + 0.05960c3 - 0.02918c4 + 0.00521c5.

Furthermore, we have

A(t, b) = H(I — P)g(t, b sin t)

( 216 b + 3456 b ) 9m M 480
48000 ''™ 51

i Jin P) V (—1)'(^ 8'n f)2'+1

+ H"-p)h m + iy.
and, for |b| < A0 ,

"A(t, fe) 11 ̂  216 A° + (3456 + 480o)^°

+ kc

and

sinh A0 - A0 — | A03 - jig = 7c

1,(6)1 = "•

Then for A0 = 1.3,

yc = 0.01151, v = 0.00072
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and since 1 — kcL = 0.85546, the inequalities to be satisfied by c and d are

c + 0.01151 < 0.85546d, 0.00072 < Q, (5.1, 6.1)

- (0.14454 d + 0.01151) < Q - 0.00072. (6.2)
IT

The inequalities are equivalent to finding a value of c for which

0 < P(c) = 1.16645c - 1.88508c2 + 0.32385c3 - 0.15857c4 + 0.02830c5 - 0.09509.

The smallest such positive c is c = 0.09626 and the corresponding value of d is d =

0.12597. It follows then that (7.1) has a 2ir-periodic solution

V = y(t) ~ & sin t + b3 sin 3t +

where

|6 - 1.12053| < 0.09626 and \\y - 1.12053 sin i|| < 0.12957.

8. Final remarks and acknowledgments. The initial efforts of this research were

made by coauthor C. A. Borges in his unpublished doctoral dissertation [1]; there he

also considers the existence of periodic solutions in the Hilbert space of square-integrable,

T-periodic functions satisfying the given symmetry conditions. The operators P and H

are the same and one easily obtains the norm

||H(I - P)|| = ico"2

by an analysis of the eigenvalues of H(I — P). The statements of the corresponding

theorems showing that T is a contraction and that the determining equation has a

solution are almost identical to the ones given here and will not be stated.

For some classes of differential equations of the type discussed the estimate given

in Sec. 6 for

| U(b) - u(b) | = 1/3.(6) - ft(6)|

is not sharp enough to insure that the required inequalities (5.1) and (6.2) are satisfied.

In particular, this may occur when L = 1, and so sharper estimates of the above dif-

ference are required.

The authors wish to gratefully acknowledge the assistance of Professors J. Krupp

and G. Richter in the programming necessary to compute the norm kc .
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