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1. Introduction. One-dimensional wave propagation in an elastic-plastic bar is

governed by a system of two first-order partial differential equations. In the elastic

region, this system is hyperbolic and linear with constant coefficients; in the plastic

region the system is quasilinear but may be linearized by a hodograph transformation.

The object of the present paper is to ascertain under what conditions a canonical form

of the resulting hodograph equations may be further reduced to a form associated

with the wave equation. To this end, finite Baecklund transformations are introduced,

and it emerges that such reduction may be achieved subject to the stress-strain law

of the material under consideration adopting certain multiparameter forms. It is interest-

ing to observe that one of these forms has already been found useful for the explicit

integration of the equations for elastic-plastic wave propagation (see Courant and

Friedrichs [1, p. 246]). Here, such results are placed in the broader context of Baecklund

transformation theory. It should be noted that the forms of the stress-strain relations

given here can be considered of practical use only if it is possible to fit these relations

to the stress-strain curves describing the behaviour of real materials. In Sec. 3, we

demonstrate, as an example, that close approximation to the stress-strain curve for a

cylinder of cold-rolled steel may be readily achieved using one of the forms.

2. The hodograph equations. One-dimensional wave propagation in an elastic-

plastic bar assumed to exhibit isotropic strain-hardening behavior, in the absence of

strain-rate and Bauschinger effects, is governed in the plastic region by (Lee [12])

0 p0c{<r)

Po"' 0

=

where

=

0* , (2.1)

(2.2)

together with the loading condition <r, > 0 for tension or <r, <0 for compression, a being

assumed to be positive in tension. Here a represents the force per unit initial cross-

sectional area and v = du/dt where u denotes the particle displacement from its initial

position x in the unstrained rod. Further, p0 represents the density of the undisturbed

medium and c(a) is the speed of propagation of a disturbance. This speed is related to

the gradient of the stress-strain curve by the equation

dtr/dt = p0c2(<r) (2.3)

* Received June 18, 1973.
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where the strain «is change in length per unit initial length. For the elastic region, the

wave propagation is governed by

Q, = ° PoC°2

.Po"1 0

where c0 is the speed of propagation in the elastic region. The system (2.1) can

be linearized by introducing

, (2.4)

1 f c° A
<t> = ~  / «<7, V,

PqCq Jo c{(7)
(2.5)

as a new independent and x, t as new dependent variables. Subject to this hodograph

transformation, the following relations hold:

&x J tv&tp ) J XvtT(f, , ^2 0^

vx = — , vt = J~lXt ,

where 0 < \.J\ < <*> and J is defined by

j _ x+ xv

The transformations (2.6) take (2.1) to

= HA. , (2.7)

where

A = H = o mr1

K(4>) 0 .
m) = c(o). (2.8)

The object of this note is to determine stress-strain relations for which the system

defined by (2.7) and (2.8) may be transformed by finite Baecklund transformations

to one associated with the wave equation, namely,

A' =
V

H' =
0 1

1 o.
(2.9)

3. The finite Baecklund transformations. Transformations £, —► £,*, j = 1, 2

U —> U* defined by relations of the form

«,(£i , £2 ,U, Uu , Uu ; £,*, £2*, U*, U(lS, UhS) = 0, % = 1, 2, • • • , 4, (3.1)

where U(j = dU/d£,■ , U(jS = dU*/d%*, were introduced by Baecklund [3] in connection

with the transformation of surfaces between three-dimensional spaces with coordinates

(£i > £2 , U) and (£1*, £2*, U*) respectively. More generally, Baecklund-type transforma-

tions of the form

®<(£i > £2 , U1 , U2 , ••• , Um , U1,^ , ••• , , Ui,(„ , ■ ■ ■ , ;

£1*, £2*, US, US, ■■■ , Um*, Uuu.*, • ■ • , Ullt..*, ■■■ , Um.tmS) = 0,

i — 1, 2, • • • , 2m + 2,
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where Um,ij = dUm/d£,- , = dU*/d£*, may be applied to general systems of m

linear first-order partial differential equations.

m m m

Y. aikUk,(2 + PikUk.i, + 7ikUk + 5; = 0, i — 1, 2, • • ■ , m, (3.3)
k=1 k=1 k=l

for the m functions in the two independent variables , j = 1, 2 (Rogers [4]). In the

present context, restricting attention to the case m = 2, it is noted that Baecklund

transformations may be applied to a quasilinear system of the form

Y. QikUk.t, + 22 ^ncUic.ii = 0 i = 1,2, (3.4)
k = l k-1

where aik = aik(U,), bik = bik(Uj), 0 < |/(t/i , U2 ; £i , ?2)| < 00, since then the role

of dependent and independent variables may be interchanged and a linear system

obtained by using the hodograph transformation. Such an interchange has been per-

formed in the preceding section for the characterizing set of equations under investigation

and Baecklund transformations of the type (3.2) may now be applied. In fact, we shall

be concerned with a subclass of transformations of the latter form, namely, with

Baecklund transformations defined by

AV = A A* + BA + CA', \A\ * 0, (3.5)

A',. = I A, + Bk + C\', \A\ ^ 0, (3.6)

<#>' = <t>, V = v, (3.7)

where A, B, C, A, B, C are in turn 2X2 matrices [a,-*], [8,-*], [5/], [a,-*], [6,*], [c,*], i,

j = 1, 2, with entries functions of <f> and v. Transformations of this type are sought

which transform

A, = HA, -> A,-' = H'A/, (3.8)

where H and H' are defined by (2.8) and (2.9) respectively. Transformations of the

type (3.5)-(3.7) were introduced by Loewner [5] in connection with the reduction to

cononical form of the hodograph equations in subsonic, transonic and supersonic flow. It

emerges that reduction may be achieved subject to the real gas pressure-density relation

being approximated by certain multiparameter forms. Various important approximations

of gasdynamics such as the well-known Karman-Tsien relation may be extracted as

particular cases of the theory. In analogous fashion, in this paper, it is shown that

reduction of the system (2.8) to one associated with the wave equation may be made

provided the prevailing stress-strain relation may be approximated by certain three-

parameter expressions.

It is assumed that t, X, t', X' have continuous mixed second-order derivatives with

respect to the hodograph variables <j>, v, so that the commutativity conditions

A^„ — A„0 , A0'o' = A,,'^' , (3.9)

hold. Thus, employing these conditions and the Baecklund transformation relations

(3.5)—(3.7), it is seen that conditions (3.9) will hold if

(A — A) A$, + (Av — B) A^ + (B — A^)A,

+ (B, - Bt)A + C.A' + CA/ - C,A' - CA/ = 0. (3.10)
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Using (3.5) and (3.6) to substitute for A„-' and A0-' in (3.10), we obtain

(A - A)A* + (A, - S - CA)A, + (B + CA — 1,)A„

+ (B. — B# — CB + CB)A + (C, - <7* + CC - CC)A' = 0, (3.11)

which, since A^ = HA, , is identically satisfied by setting

A = A, (3.12)

(A„ — B — CA)H + (B + CA - AJ = 0, \AV - 5 - CA| ^ 0, (3.13)

B. - Bt - CB + CB = 0, (3.14)

C, - C, + CC - CC = 0. (3.15)

Returning to (3.8) it follows, from (3.5), (3.6) and (3.12), that

A/ - WA,-' = A[A* - A^tf'AA,] + (B - H'B)A + (C - tf'C)A', |A| ^ 0,

so that, setting

A"'ff'A = H (3.16)

B = H'B, C = H'C, (3.17)

the system A0 = IIA, is transformed to the associated system Ay' = H'A, ' and con-

versely via the Baecklund transformations defined by (3.5)-(3.7).

Summarizing, it has been established that

A0 = ffA„ A/ = H'A/

via the Baecklund transformations (3.5)-(3.7) subject to the conditions (3.12)—(3.17).

This result was first obtained by Loewner [5] in a gasdynamic context and has recently

been extended by Rogers [4] to general systems of m linear first-order partial differential

equations. We now proceed to investigate the system (3.12)-(3.17). If we choose A (= A)

and B, B independent of v and <j> respectively and C = C = 0, it follows that (3.15) is

satisfied while (3.14) will be satisfied if B is a constant matrix. With B constant, it is

immediately apparent from (3.17) that B is also a constant matrix. Eq. (3.13) now

reduces to

At - H'B + BA-'H'A = 0 (3.18)

where (3.16), (3.17) and (3.12) have been used to eliminate B, H and A. It is now neces-

sary to specialize the matrix A = A so that the property of zero principal diagonal

elements is preserved under the mapping H —> H'. From (3.16) it is clear that this

property is invariant if (but not only if) A adopts the diagonal form

A =

in which case

H' = AHA'1 =

Now

a' 0

a22.

0 ci\ h% I^2

a22hi /a1 0

(3.19)

(3.20)
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A'lH'A = 0 a22h21' /ay

aW/af 0
so in (3.18)

W 0

0 a2

0 h»u

hi2' 0 .

611 W

hS s22
+

V w
h\ hi

0 a2h2 /a?

flihx' /a2 0

= 0.

so the constant vector B is necessarily of the form

0 1
B =

{h* 0

and the above matrix equation reduces to

(ai1)* — h2'hi + hi'h2{ai /a2) = 0, (3.21)

(at2)* - hx2'521 + h2'hi(a2 /di) = 0. (3.22)

Eqs. (3.21) and (3.22) combine to show that

det A = al1a22 = constant = X, X ^ 0,

whence the system (3.21), (3.22) may be reduced to a single Riccati-type equation in

either a^ or a22. In particular, the Riccati equation in a/ is, on setting h2' = h2' = 1,

0a11), + a(a11)2 + p = 0, a = h2\-\ P = -hi*. (3.23)

Thus:

a) If a = 0, dj1 = —P4> + 8,

b) If 0 = 0, at1. = l/(ffl* + e),

c) If P/a > 0, a* = (P/a)1'2 cot {(P/a)w2(a<j) + f)},

d) If Pi a < 0, a? = (—P/a)u2 coth {( — P/ci)1/2(<x<t> + 77)},

where <j>, e, f, r) are arbitrary constants of integration. Now, upon choosing h2' = hx2' = 1,

it follows from (3.20) and (2.8) that

h2 = a2/ax1 = hx2 = a'/a, = K(<t>). (3.24)

Hence

K(4>) = a^ /a2 = (3.25)

whence, in the cases (a)-(d) above, in turn,

a) = X '[ — p<t> + <5]2,

b) K(4>) = x-'M, + e]"2,

c) K(<f>) = X \P/a) cot2 {(P/a)U2(a<t> + £)},

d) K(<t>) = X-1( P/oi) coth2 {( — p/a)1/2(a(j) +??)}.

The (<r, e) relations in cases (a) and (b) are given below; in the cases (c) and (d) and

(77, e) laws may be generated parametrically via a = e = e(</>) relations.

a) K(<j>) = X_1[ — P4> + S]2. From (2.8), c(a) = K(<p) = X_1[ — P4> + 5]2, so that, on

employing (2.5),

dtp/da = Xpo '[— P<t> —5] 2, (3.26)

whence

<t> = {5 + [3/3X(or + y)p0 ']1/3}/3 \
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Fig. 1. XW(3/34) = -1223.994, £ = -0.1, T = -91181.203.

where y is a constant of integration. Relations (3.26) and (2.3) now show that da/de =

X~2po[3/3X(<r + t)po~T/3> an(i hence

<r = -|\Wr4(e + £)-3 - t, (3.27)

where J is a further constant of integration.

b) K{<j>) = + e]~2. In a similar way, we may show that, in this case, the stress-

strain relation adopts the form

a = -p0[(3XV)(£ + $)rI/3 + 5 (3.28)

where £, 5 are arbitrary constants.

In Fig. 1, the theoretical stress-strain law (3.27) has been employed to approximate

an empirical stress-strain curve for a cylinder of cold-rolled steel. In fitting (3.27) to

the actual stress-strain curve, the approximating curve was required to pass through

the point at which plastic deformation began and also to have the same gradient at

this point. Further, the theoretical model curve was required to pass through another

convenient point on the real stress-strain curve with a view to obtaining acceptable

alignment for the early stages of the plastic deformation; other ways of fitting the curves

are available, of course, depending on the requirements of a specific problem. The

theoretical stress-strain laws (b)-(d) are similarly available for approximation purposes
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