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ON THE STABILITY OF SOLUTIONS
OF A SECOND-ORDER DIFFERENTIAL EQUATION*

By E. INFELD (Institute of Nuclear Research, Warsaw)

Abstract. This paper deals with the Hill differential equation

d2y/dx2 + —  —  :—2 y = 0.
i" 1 — 2a cos x + a y

Although this equation looks more difficult than Mathieu's, it can be dealt with some-

what more simply than the latter. Stability criteria are obtained in terms of r and a

(at least in principle).

1. Introduction. The stability of the second-order, nonsingular, parametric equation

d2y/dx2 +    —   —2 y = 0, a2 < 1 (1)
1 — 2a cos x + a

can be investigated quite simply. As this is a Hill equation, solutions can be put in the

form

y = exp (nx)P(x) (2)

where P(x) is periodic with period 2ir and r is real or pure imaginary [1], Now if r is

real the solution will evidently be unstable, and if imaginary, stable. Determination

of which it is seems at first glance to be rather difficult, as an infinite determinant must

somehow be evaluated. For the general Hill equation this cannot be done algebraically

(by giving a recurrence formula, say). We shall perform this evaluation. The result

will, in fact, be given by a recurrence relation. A particular case will then be discussed

in some detail (r = 1). The general situation is stability for some range of parameters,

as is the case for Mathieu's equation.

First we Fourier-expand the function multiplying y and change to £ = (l/2)o:, ob-

taining the standard form of Hill's equation

+ 2/^(1 — a) 1 + 2r(l — a2) Xj a" cos 2 n^y = 0. (3)

2. Stability. To apply the stability analysis outlined in McLachlan's book [1] it

is convenient to use the notation

0„ = 4r(l - a2)"1, e2s = 4aIslr(l - a2)"1. (4)

This notation follows naturally from expanding P(x) in (2) in exponential functions.

In the present note 90 > 0, though extension to negative 90 is straightforward.
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Following McLachlan, we see that solutions of (3) are stable if an infinite deter-

minant A(0) is positive and smaller than sin-2 (ir/2901/2). This determinant can be

denoted by |&m„|, where the integer m goes from — <*> to from the bottom of the

page to the top, and n from left to right, and

=1, m + n = 0 . .
(5)

= ©2m+2r,(©0 — 4m2) \ m + n ^ 0.

As (r > 0) 0±2r = a~'O2 , we can simplify the determinant by subtracting column n

multiplied by a from column n + 1 if n is positive, and column n times a from column

n — 1 if it is negative. This leads to an expression for |ct| which is a product of two

semi-infinite determinants, the upper right-hand and lower left-hand sectors now con-

taining nothing but zeros. After some further manipulation we see that the determinant

is the square of

D = lim = lim (il -^TT?==i) , c =
N-,« n-» \r-i r - s V 1 - c / 1 + a

d{1> = 0, dm = -1, dw = 2(1,2 N > k > 2 (6)
rC C

= U- -1
VAr2c a,

d"-" - dw~2).
a/

It is easy to see that D(r, a —» 1) = 0.

When the product formula for sin x is used we see that

D — ir(l — c2rI/4 sin-1 [tt(1 - c2)"1/4] lim dW). (7)
AT-*oo

and the stability criterion simplifies to

d' = 7r(l - c2r1/4 lim a" dW) <1. (8)

This has been checked to be true for r = 1, all a. For this value of r the crucial expres-

sion (8) goes from 0 at a = 0 to a maximum near a = 0.9, and back to 0 at a = 1.

The function y(x) is bounded everywhere for all a < 1 and is quasi-oscillating with

two periods (2ir and ir2 arc sin-1 d') [1], The function d'(C) has been plotted.

When evaluating D it is more to the point to use the iVth product in (6) than the

elementary function it leads to. This is so because the 0(N~2) terms in d(N)/d{N'1)

cancel those coming from the corresponding ratio in the product and the term-to-term

error is then 0(N~*), as can be shown by an approximate evaluation of d{N)/d''N~1)

from the recurrence relation. One can see the difference even at small N. For C = 0.9,

for example, (da' — adl6')/d"' is about 3%, whereas (D(7) — £)(6,)/-D<7> is less than

1%, and (dai) - adil3,)/dai) is about 0.8% whereas (Dili) - Dil3')/D(li) is only

0.03%. A term-to-term error of 0(N~i) means an overall error of 0(N~3) and so N = 7

is quite sufficient.

For general values of r the term-to-term error would be 0(N~2), leading to an overall

error of O^N'1) in using any particular D(N\

Summary. A method for determining stability and finding periods of oscillation

or growth rates for solutions to a class of second-order differential equations has been
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given. One specific example has been dealt with in some detail. This example has ap-

peared in a physical context [3],
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