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1. Introduction. In this paper we discuss the propagation of plane sinusoidal waves
in linear viscoelastic materials, both anisotropic and isotropic. Unlike the usual dis-
cussions (see, for example, [1]), we do not here assume that the planes of constant
amplitude and constant phase are parallel. We do, however, assume that the imaginary
parts of the complex moduli are small compared with their real parts and that cor-
respondingly the magnitude of the imaginary part of the slowness vector is small com-
pared with that of the real part. This implies that the attenuation of the wave is small in
distances of travel of the order of a wavelength.

For a general anisotropic material it is found that, provided the imaginary parts
of the complex moduli are sufficiently small compared with their real parts, for any
specified directions of the normals to the planes of constant phase and constant amplitude,
except for those satisfying a certain relation which depends on the real part of the
complex modulus tensor, three waves can be propagated. Each of these is slightly
elliptically polarized, the major axis of the ellipse being large compared with its minor
axis.

In the case of an isotropic material, one of these waves is nearly longitudinal and
the others are nearly transverse waves. The nearly longitudinal wave is slightly ellip-
tically polarized with its major axis in the longitudinal direction and its minor axis
coplanar with the normals to the planes of constant amplitude and constant phase.
The nearly transverse waves are also slightly elliptically polarized with their major
axes arbitrarily oriented in the planes of constant phase and their minor axes in the
direction of propagation. For these waves, both the real and imaginary parts of the
complex slowness vector are independent of the orientation of the direction, in the
transverse plane, of the major axis of the ellipse. Consequently, waves may also be
propagated which result from the superposition of two such nearly transverse waves,
for which the displacements in the transverse plane have different directions of polariza-
tion and different phases.

In an isotropic viscoelastic material, for which the imaginary parts of the Lam6
constants are sufficiently small compared with their real parts, elliptically-polarized
nearly longitudinal waves and elliptically-polarized nearly transverse waves of the type
described can be propagated for any inclination, other than a right angle, of the normals
to the planes of constant phase and constant amplitude. On the other hand, in an iso-
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tropic elastic material, plane waves can only be propagated if the planes of constant
phase are either parallel or perpendicular to planes of constant amplitude.

Lockett [2] has considered the propagation, in an isotropic linear viscoelastic material,
of plane sinusoidal waves for which the planes of constant amplitude are not necessarily
parallel to the planes of constant phase and has discussed the reflection-refraction
problem for such waves. In his discussion he draws attention to the elliptical character
of the polarization of the waves when the planes of constant phase and constant amplitude
are not parallel. Lockett has not, however, made the assumptions which we have made
here that the imaginary parts of the Lame constants are small compared with the real
parts and consequently his results are, in some respects, less explicit than ours. Also,
he restricts his analysis to the case when the polarization is entirely in the plane formed
by the normals to the planes of constant phase and constant amplitude.

2. Anisotropic materials. We consider a linear viscoelastic material undergoing a
deformation for which the components of the displacement vector u(r) at time r, in a
rectangular cartesian coordinate system x, are w,(r). It is assumed that the components
an of the stress tensor <J, at time t, are given by

0\; = ciiklekl{t) + J fiihi(t — r)et!(r) dr, (2.1)

where efci(r) are the components of the infinitesimal strain tensor e(r) at time r, given by

Cuu and fuu are symmetric with respect to interchange of i and j and of k and I.
We now suppose that the deformation corresponds to a damped plane sinusoidal

wave of angular frequency w. Using the usual complex notation, we can write the complex
displacement m,(t) in the form

Ui(r) = Ui exp iw(Skxk — r), (2.3)

where Ui is a complex constant vector and Sk are the components in the system x of
the complex slowness vector S.

Introducing (2.3) and (2.2) into (2.1), we see that the complex stress is given by

<ri{ = 2if exp iu(Skxk — t), (2.4)

where

S ij = jki S\ U k (2.5)

and

Call = Ctjkl(w) = £c„h + f 1iiki{t ~ t) exp ico(t - r) drj- (2.6)

cim is the complex modulus tensor for the material.
In the absence of body forces, the stress tr;,- must satisfy the equations of motion

dtjjj/dXj = p(d2Ui/dt2), (2.7)
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where ut = ut(t) and p denotes the mass density of the material. Introducing (2.3),

(2.4) and (2.5) into this equation, we obtain

(CijkiSjSi p5ik) Uk = 0. (2.8)

This has a non-trivia] solution for Uk if and only if

\CijkiSjS, p5,j| = 0. (2.9)

We shall assume that the planes of constant phase and the planes of constant am-
plitude for the wave are not necessarily the same and that they are normal to the real
vectors m and n respectively, which have components m, and «,■ respectively in the
system x. We shall also assume that, for the wave considered, the imaginary part of S
is small in magnitude compared with the real part and that the imaginary part of cUH
is small compared with the real part. We may then write

S = S+ + «S" = S+m + uS~n

Cijkl ^ijlcl "I" LfCjjkl ,

where e is small and real. We assume that the elastic part ctJ« + of the complex modulus
satisfies the Onsager relations

Cijkl = Cklii • (2.11)

It follows from (2.8) that we may, without loss of generality, take the imaginary part
of U to be 0(f). We may therefore write

U = IT + ieU~. (2.12)

Introducing (2.10) and (2.12) into (2.8), we obtain, by equating the coefficients
of €° and f separately to zero, the propagation conditions

{(S+)2c,ikl+m,mi - PSik}Uk+ = 0, ^ ^

S+{S~ciiki+(mlni + rrijU,) + S+cijkl~mlmi}Uk+ = — {()S+)2c,ilI+m!my — pSik\Uk~.

3. The energy flux vector. The energy flux vector R{(t) at time t is defined as the
rate at which energy leaves the material across an element of area normal to the a;,-axis,
measured per unit area. It is given by

RS) = -<r„ + (0V(0- (3.1)
This fluctuates with time and accordingly we define a mean energy flux vector R as the
average of R(<) over a cycle. Thus

/»2 t/ 03

R = Rid) dt. (3.2)
7T J o

Inserting (2.3) and (2.4) in (3.1), we find from (3.2) that

Ri = ^o}2(cliklSiUkUi)+ exp ( — 2tuSv~xp), (3.3)

where the bar denotes the complex conjugate. By using (2.10), (2.11) and (2.12), Eq.
(3.3) becomes
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R{ = %o>2S+ciiki+m,iUk+Uj+ oxp (—2eo}Sv~xv), (3.4)

neglecting terms of first and higher orders in e but bearing in mind that xp may be large.
We note, using (2.11), that

R.rii = |co2S+ciiki+nimlUk*U * exp (—2twSp~xp) . .
(3.5)

= \uS+ciiki+mlniUi+Uk* exp (—2twS~xr).

The stress power 3D is given by

3D = <7ji+(dui+/dxi) (3.6)

Thus if 3D denotes the amount of energy dissipated in a cycle, per unit volume, we have

2D =

Using (2.3) and (2.4) in (3.7), we find

3D = — iro}2(cijkiSiUkUi§j)~ exp ( — 2tuSv~xv). (3.8)

To the first order in e, we obtain, with (2.11),

£> = — «7tco2(S+)2ciiki~mlmiU{ + Uk* exp ( — 2twSp~xp). (3.9)

4. The propagation conditions. We now consider the propagation conditions (2.13)
in detail.

If the unit vector m is specified, S+ may be obtained from the secular equation

| (S+)2ciikl+mlmj — p8ik\ = 0, (4.1)

which is the condition that (2.13)! have a solution other than XJk+ = 0. From (2.11)
it follows that

c,iki*mxmt = ckiu+mlmi , (4.2)

and hence the three roots of (4.1) for (S+)2 are all real. To each of these roots there
corresponds a solution of (2.13)! for Uk+ which is determined uniquely in direction
but not in magnitude. These three directions are, of course, mutually perpendicular.

We now multiply (2.13)2 by [//• Then using (2.11), (2.13)i and (4.2), and assuming
S+ ^ 0, we obtain

2S~ciiki*miniU *Uk* = — S*ciiH~mlmiU *Uk . (4.3)

We can eliminate Ui + Uk+ from Eq. (4.3) in the following manner. Let \ik denote the
cofactor of (S+)2ciikimlmj — pSik in det \(S+)2cijklm,mi — p5ik|. Then, following Synge
[2], we can express \ik in the form

X,* = Qu:uk+, (4.4)

where 0 is a constant. Accordingly (4.3) may be rewritten as

2S~ciikl+mlni\ik = — S+ciikl'mlmi\ik . (4.5)

Eq. (4.3) determines S~ in terms of S+, m and n provided that

Cnu+mWiUSUS * 0. (4.6)
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Since U+ satisfies (2.13)i , it can be shown that the component of U" in the direction
of U+ is not determined by (2.13)2 . In order to do this, we write U ~ in the form

IT = air + P, (4.7)

where P is a real vector perpendicular to U+ and lying in the plane of U- and U+, so that

PU+=0. (4.8)

Introducing (4.7) into (2.13)2 and using (2.13)! , we obtain

S+{S~cim+(mlnj + m,n,) + S+cijkl~mlmj}Uk+

= -{(<S+)2ciiH+mlmi - pSih}Pk ■ (4.9)

Thus, Eq. (2.13)2 , which appears superficially to be an equation for the determination
of U~ if U+, m and n are known, in fact determines only the component of U~ in the
plane perpendicular to U+. This leaves the component of U parallel to U+, and hence
the phase of the component of U in this direction, undetermined.

Suppose now that we have chosen m and solved (4.1) for S* and (2. L3): for U+.
Then there is a whole plane of directions n for which (4.6) is not satisfied, i.e. for which

ciikl+m,niUi+Uk+ = 0. (4.10)

In general, however, the corresponding wave

Ui = (U * + itU D exp Lu(S+mvx„ — t) exp (4.11)

does not propagate in the material. For, if (4.10) holds, then, from (4.3),

S+cijkrm,mjUi+Uk+ = 0 (4.12)

must be satisfied. Here m and U+ are assumed known so that in general (4.12) cannot
be satisfied unless S+ = 0, in which case the wave does not progress.

From (3.5) it is seen that (4.10) may be written

R.n, = 0, (4.13)

so that the mean energy flux vector lies in the plane of constant amplitude, whilst by
(3.9) Eq. (4.12) may be written

£> = 0, (4.14)

so that no energy is dissipated. So, if for some choice of m and corresponding solutions
S+ of (4.1) and U+ of (2.13)! n is chosen to satisfy (4.10) and if (4.12) holds, then the
materia] behaves elastically for the corresponding wave.

Of course, if (4.10) holds, then (4.3) may not be used to determine S~. In fact S~
is arbitrary and must be determined from the boundary conditions. This arbitrariness
in S~ leads to a corresponding arbitrariness in Pk , from (4.9).

The indeterminacy of U is, in fact, more apparent than real. We note, from (2.8),
that for a specified S satisfying (2.9), U is determined apart from an arbitrary scalar
multiplier. The apparent indeterminacy of the component «U+ of U~ (see (4.7)) results
from the approximation in which terms of order e2 are neglected. To the order e, P is
unaltered by small changes of phase in the component of U~ parallel to U+, but it
would be altered if terms of higher order in e were retained.
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The fact that the component of U perpendicular to U+ is not zero implies that the
wave is slightly elliptically polarized, the major axis of the ellipse being substantially
in the direction of U+.

For an elastic material cuk!~ = 0, and from (4.3) we obtain

S~ = 0, (4.15)

ciiu+mlniU i+Uk* = 0. (4.16)

If S~ = 0, we have, from (4.9), Pk = 0, so that IT and U+ are parallel. We note
that in general Eq. (2.13) i yields three possible directions for U+, corresponding to the
three possible solutions of (4.1) for (S+)2. These are the directions of the three mutually-
perpendicular eigenvectors of the symmetric matrix \\(S+)2ciikl+mlmi — p5it||. The
corresponding waves have, of course, their complex displacements linearly polarized
in the directions of these eigenvectors. The arbitrariness in the choice of U~ corresponds
to an arbitrariness in the phase of the wave.

If (4.16) is applicable, then for each m and corresponding (<S+)2 and U+ this relation
determines the directions of n for which waves can be propagated in an elastic material.
S~ is arbitrary and must be determined from the boundary conditions.

5. Isotropic materials. If the material is isotropic, we can write the complex modulus
tensor cUH in the form

Cuki = + bjk&n) + , (5.1)

where n and X are the complex Lame constants for the material. We introduce the
notation

/j. = yii+ -f- ie/j , X = A+ -f- teX . (5.2)

Eqs. (2.13) then become

0S+)2[(m+ + A+)(lT-m)m + /IT] - pu+ = 0,
»S+»S~[2yii+(m-n)U+ + (M+ + A+){(U+-m)n + (U+-n)m}]

+ 0S+)VU+ + GT + A-)(U+-m)m]
= [p - n+(SyW - (m+ + X+)(S+)2(U~ -m)m.

Also, Eq. (4.1) becomes

|(S+)2[(m+ + \+)m,mk + 8,k] - PS«| = 0. (5.4)

By using (3.9), the dissipation per cycle, per unit volume, is given by

£ = -€7rco2(/S+)2{M~U+-U+ + (X" + /0(U+-m)2} exp (-2«oS"-x) (5.5)

and, from (3.4), the mean energy flux vector is

R = ico2S+{(X+ + M+)(U+-m)U+ + M+(U+-U+)m} exp (-2«oS"-x). (5.6)
Eq. (5.4) yields two different solutions for (S+)2 and it is seen from (5.3)! that these

correspond to waves for which the vector U+ is polarized transversely and longitudinally
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with respect to m, the unit normal to the planes of constant phase. We shall discuss
the two types of wave separately.

(i) Transverse waves. In this case, we have

= P, U+ m = 0. (5.7)

Eq. (5.3)2 then becomes

£-[2M+(m-n)U+ + (M.+ + A+)(U+-n)m] + S+n~V+ = -S+(n+ + X+)(lT-m)m, (5.8)

and (5.5) and (5.6) become

5 = -«rco20S+)yU+-U+ exp ( —2ecoS~ -x),
(5.9)

(R = i<o2<S V(U+-U+)m exp (-2euS'-x).

Taking the inner product of (5.8) with U+ and using (5.7)2 , we obtain

2n+S~(m-n) = ~^S+. (5.10)

Taking the inner product of (5.8) with m and using (5.7)2 , we obtain

(S+U~-m = —»S~U+-n. (5.11)

Thus, provided

mn 5^ 0, (5.12)

Eq. (5.10) determines S~ and Eq. (5.11) determines the component of U~ parallel to
m, i.e. normal to the planes of constant phase. The component of U perpendicular
to m is, however, not determined by the equations.

If m n = 0, so that the condition (5.12) is violated, then, bearing in mind that
S+ ^ 0, i.e. the wave cannot have zero phase velocity, we must have y.~ = 0. This
condition implies that the material is elastic with respect to shear vibrations. Con-
versely, if n~ = 0, then S~ = 0, unless m n = 0 (i.e., the planes of constant phase and
constant amplitude are perpendicular). The latter condition arises in the case of Love
and Rayleigh waves. If S~ = 0, the planes of constant phase are also planes of constant
amplitude and the wave propagates without change of amplitude. Also, from (5.11)
it follows that U~m = 0, i.e. the wave is entirely transverse. We therefore conclude
that for an elastic material, the waves must either have their planes of constant phase
parallel or perpendicular to planes of constant amplitude. In the latter case, i.e., if /x~ = 0
and m • n = 0, then Eq. (5.10) is identically satisfied and does not enable us to determine
S~. The ratio S~/(U~ -m) is determined from (5.11). S~ and the component of U~ in
the direction of U+ must be determined from the boundary conditions.

In the case when m-n^O and /j. 9^ 0, i.e. the material is not elastic, it follows from
(5.10) that S~ 0. Then, from (5.10) and (5.11) it follows that

TT 1 M U *11U m = - — —— • (5.13)
2 n m n

The waves will be elliptically polarized, the plane of polarization being, in general,
inclined at a small angle to the planes of constant phase. It follows from (5.13) that if
m = n, so that U+ • n = 0, then U~ -m = 0 and the plane of polarization is perpendicular
to the direction of propagation m. We note also that if /u~ ^ 0, the planes of constant



120 M. A. HAYES AND R. S. RIVLIN

amplitude and constant phase may be inclined to each other at any angle except a right
angle. However, as far as the present discussion is concerned, this is restricted by the
consideration that m-n must not be so small that the condition that the magnitude
of eU be small compared with that of U+ is violated.

(ii) Longitudinal waves. In this case we have

(X+ + 2 M+)(S+)2 = p, U+ = /3m, (5.14)

say, where 0 is a real constant. Then (5.3)2 becomes

/3>S+»S~[2^+(m-n)m + (A+ + m+){h + (m-n)mj] + /3 (»S+)2(X~ + 2yu~)m

= [p - m+0S+)2]U" - (X+ + M+)(S+)2(U--m)m, (5.15)

and (5.5) and (5.6) become

£> = —€7rj32a;2((S+)2(X + 2/i ) exp (—2eu>S -x),
(5.16)

(R = $p2a>2S+(\+ + 2/u+)m exp ( —2eojS~-x).

Multiplying (5.15) throughout by m, we obtain, with (5.14) x

2<ST(X+ + 2M+)m-n = -S+(\~ + 2M-). (5.17)

Using (5.14)! and assuming S+ ^ 0, we can rewrite (5.15) as

/3S {(X+ + 3/i+)(m-n)m + (X+ + M+)n! + 0S+(\ + 2n )m

= S+(\+ + M+)[IT - (ir-m)m]. (5.18)

We note that U~ — (U~ m)m is the component of U~ perpendicular to m, i.e. to U+.
Thus, provided

m-n ^ 0, (5.19)

Eq. (5.17) determines S~ and Eq. (5.18) enables us to determine the component of U~
perpendicular to m, its component parallel to m (and hence the phase of U • m) remaining
undetermined.

We note also from (5.18) that [U~ — (U~-m)m] lies in the plane of m and n and ac-
cordingly the wave is, in general, elliptically polarized in the plane of m and n. However,
in the particular case when n = m, i.e., the planes of constant phase and constant
amplitude are parallel, it follows from (5.17) and (5.18) that LP — (U~-m)m = 0,
so that the wave is linearly polarized in the direction of m.

If m-n = 0, so that the condition (5.19) is violated, it follows from (5.17) that
X" + 2;u~ = 0, i.e., the material is elastic with respect to longitudinal waves. Con-
versely, if the material is elastic so that X~ + 2n~ = 0, then either m-n = 0, or = 0.
In the former case, the planes of constant phase and constant amplitude are perpen-
dicular and we note that (5.17) is identically satisfied. Accordingly, Eqs. (5.17) and
(5.18) cannot be used to determine S~ and U . These must then be determined from
the boundary conditions. If S~ = 0, it follows from (5.18) that [U~ — (LT-m)m] = 0,
i.e., the wave is longitudinally polarized.

In the case when X- + 2/i~ 0, i.e., the material is not elastic, it follows from (5.17)
that <S 9^ 0. Then, from (5.17) and (5.18), we obtain
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U" - (D-.m)m = 2°iX"++2)f,^.n [(»")■» - "I- (5 20)
Accordingly, as in the case of transverse waves, the planes of constant phase and con-
stant amplitude may be inclined to each other at any angle except a right angle. How-
ever, as far as the present discussion is concerned, this is restricted by the consideration
that mn must not be so small that the condition that the magnitude of tU be small
compared with that of U+ is violated.
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