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1. Introduction. Let 6{x, t) represent the temperature distribution in a semi-
infinite rod from which energy (heat) is radiated along the entire length. In addition,
suppose that at the end x = 0 energy is radiated at a rate proportional to the nth power
of the temperature there (n > 1) and is radiated or absorbed linearly. Finally, suppose
that energy is applied to the end at a rate proportional to some given function /(<).
If the temperature is initially zero then 6(x, t) may be described by the initial-boundary-
value problem

6,(x, t) = dxx(x, t) — hd(x, t), x > 0, t > 0, (1.1)

0,(0, t) = adn{0, t) + b0(0, <) - /(<), t > 0, (1.2)

6(x, 0) = 0, x > 0, (1.3)

d(x, t) —» 0 as x —» , t > 0. (1.4)

Here a > 0, h > 0, and b are given constants. Also f(t) is bounded, non-negative, at
least piecewise continuous, and becomes positive in a neighborhood of the origin. More-
over f(t) = 0 for tc < t < oo.

This problem is a generalization of the one considered by Keller and Olmstead [ll
and by Handelsman and Olmstead [2], Specifically, they considered this problem with
b = h = 0. Friedman [3] discussed the existence, uniqueness, and certain other properties
of the solutions of similar problems but with the requirement that an outward derivative
at the surface be a strictly decreasing function of the dependent variable.

An alternative physical interpretation of (1.1)—(1.4) is that B(x, t) may represent
the concentration of a diffusant in an absorbent occupying the halfspace x > 0 between
which a first-order chemical reaction takes place. In this case the boundary condition
(1.2) is taken to describe the evaporation or absorbtion of the diffusant through the
surface.

* Received July 9, 1971; revised version received December 26, 1972.
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In the following work a constructive proof of the existence of a positive solution is
presented and it is demonstrated that there can be only one positive solution to the
nonlinear problem. Linear problems whose solutions bound 6(x, t) are presented. These
bounds are then used to describe the large-time behavior of 6(x, t). Specifically, 6(x, t)
is bounded by quadratures which yield the asymptotic results that for b > 0, h > 0

6(x, t) = C,r3/2 exp ( — ht) as <—><»,

and for b = 0, h > 0

0(x, t) = C2r1/2 exp ( — ht) as

Even for b < 0, i.e. linear absorbtion, 0(x, t) must approach zero if b2 — h < 0. Hence

C3t~1/2 exp (—ht) < 0(0, t) < C4 exp [(62 — h)t] as £ —» <=°.

On the other hand, if b2 — h > 0, there is no assurance that the concentration approaches
a limiting value in time. However, if it does, then

|6| - hW2 < lim«fl"_1(0, t) < |6|.
t * co

2. Existence and uniqueness. The existence and uniqueness of solutions of general
problems similar to (1.1)—(1.4) have been discussed in detail by many authors. Straight-
forward proofs are provided here for completeness and because certain points will be
raised which will be useful in later discussions.

It is not difficult to show that any solution of (1.1)—(1.4) must satisfy the integral
solution

6(x, t) = f j(s)K„(x, t-,s) ds + [ {p(s) — [6 + a0"-1(O, s)](0(O, s)K„(x, t\s) ds (2.1)
Jo Jo

where K„(x, t; s) is defined by the system

K„,,(x, t]s) = KftXX(x, t\s) — hKp(x, tm,s), x > 0, t > s > 0, (2.2)

K„,z(0, t; s) = p(t)K„(0, t; s) — S(t — s), t>s> 0, (2.3)

K„(x, t;s) = 0, t < s, (2.4)

K„(x, t] s) —» 0 as x —> °° . (2.5)

Here p(t) is non-negative but otherwise arbitrary. The desirability of allowing the
coefficient p to be a function of time rather than a constant is suggested by the observa-
tion that (1.1)—(1.4) is analogous to a linear problem in which the "evaporation coeffi-
cient" [6 + ctdn~'(0, <)] varies with time. Notice that the solution of (2.1) is reduced to
a quadrature if 6(0, t) is known. For this reason the existence of a solution is discussed
in the context of finding 6(0, t).

Certain properties of the Green's function K„(x, t; s) are now presented so that they
will be available when they are needed for subsequent calculations. If we let K„(x, t; s) =
G„(x, t; s) exp [ — h(t — s)] Eqs. (2.2)-(2.5) become

G„,t(x, <;s) = G„,xx(x, t~,s), x > 0, t > s > 0, (2.6)

G„,x(0, t;s) = p(t)G„(0, Z;s) — 5(t — s), t >s > 0, (2.7)
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G„(x, t;s) = 0, t < s, (2.8)

Gp(x, t] s) —> 0 as x —> . (2.9)

These equations are exactly those which define the Green's function used by Keller
and Olmstead, and many useful results are obtained as obvious extensions of their
work. In particular, K„> 0 because G „ is. Moreover, K„ < G„so f0' Kv(x, t; s) ds < if1,
where pit) = y = constant. A result implied by Keller and Olmstead, although not
explicitly stated by them, is that, for pit) = p*{t) = aBt~l, as t —> <»

f G„.(x, <; s) ds = 7r 1/2t 1/2 f exp [ — 2aB£l/2] f s exp
J h Jo J h

(—£s) ds d£ + o(t 1/2).

Hence as t —> <*>

£ K„.(x, t; s) ds > t 1/2 exp (htx) exp [ — 2a.B£/2] f s exp (—£s) ru»

•exp (—ht) + o(t 1/2 exp (—ht)). (2.10)

Finally, it is useful to have bounds on Kp(x, t; s) for p(t) = n = constant. In this case
may be calculated explicitly and is

K,(x, t; s) = H(t — s) exp [ — h(t — s)] x exp [ — x2/Ait — s)]
2 it - S)1/2[x + 2nit - «)]

+ 2/75 exp [v.X + I?(t - s)]r^-J, v(t - s) + t?x + 4^_ , (2.11)

where H(t — s) is the Heaviside function and F( — 5, r) is an incomplete gamma function-
Various representations for r( — r) (see e.g. Erdelyi [4]) are used in deriving the
desired bounds. In particular,

2e~W~1/2 r e"tl/2 e~Y~1/2
r(-f, r) = I dt = r-^ , r > 0, (2.12)

where q(r) is a certain continued fraction. From (2.12)

1/2 c°° r 1"" "I-2

*&-Tf.F7v"U hh«] <213>
and by the Schwarz inequality

[f fri -T * a; m"')(/; <->■<■«) - v r m *■
Thus dq(r)/dr > 0, r > 0, i.e. q(r) is nondecreasing. As r —> 0, Eq. (2.12) yields

?(0) = ^ [f~ e"t-U2 dt\ 1 = \ (2.15)

or
-r -1/2r(-ir) < e'rr-W2/(r + §). (2.16)

As r —> 00t r(-i r) has the asymptotic expansion
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r(-i, D = «->-"[£ ^ + 0(W-,]. (2.17)

This and (2.12) yield that q(r) —> 3/2 as r —* oo, or

r(-§, r) > e"r~U2/{r + 3/2). (2.18)

In conclusion, then,

Kfy, > m - «)„- exp [-«< - «) - ^]{(, _ .)■„2,(, _ |

and

K.fe i; .) < H(t - ,)»-'• exp [-6(1 - ») - 4<rbJ{(i _ ,ylx + 2,(, _ ,)] + \

Recall that (2.1) is solved if a 0(0, t) can be found to satisfy the nonlinear integral
equation

0(0, t) = [ f(s)K„(0, t; s) ds + f {p(s) — [6 + a0n~'(O, s)]} 0(0, s)X"p(0, <; s) ds. (2.21)
Jo Jo

Let M = max /(<), pick R > 0 such that R(aR"~l + b) = M and choose p(t) — -q* =
anRn_1 + b. Finally, define the elements of the sequence {<?,(£)} by the equations

<Po(t) = f Ks)KAO, t]s)ds, (2.22)
Jo

vM = Vo(t) + a [ [nR"~1 - t] s), i = 1, 2, 3, • • • . (2.23)
Jo

<Pa(t) is certainly positive. Moreover, it is bounded because

<p0(t) < M f K,.(0, t) s) ds < M/n* (2.24)
Jo

or

(l) < R(aR" ' + b) .
^ - anR"-1 + 6 < R- ( -25)

If (2.23) is rewritten as

<Pi(t) = <Po(t) + a(n — 1 )Rn f Kv.(0, t; s) ds
0 (2.26)

— a f [(n — l)i?" + tpi.y"(s) — V.-i(s)]^",.(0, s) tfs,
0

then it follows from the easily-proven inequality
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F{x, y) = xn + (n — 1 )y" — nxy >0 for x > 0, y > 0, n > 1

and F(x, y) = 0 only for x = y that

<Pi(t) < <Po(t) + a(n — 1 )R" [ 2f„.(0, £;s) ds. (2.27)
Jo

Hence

R(aRn~l + b) a{n - 1 )R" ,'-12 ("9 9^
) on/2""1 + 6 +anfi"_1 + b ' x> 2> "" • (2-28)

Assume now that <pi+1(t) > <p<(t) for some i and consider the difference

Vn-iit) — <pi+i(t) = a f [nR"~1(pi+l(s) — <pi+i"(s) — nK"~Vi(s) + ¥5i"(s)]K,.(0, t; s) ds.
Jo

(2.29)
Again, it is a simple matter to prove that the integrand is positive and since ipi(t) >
<p0(t) > 0 the uniformly-bounded sequence {<p,(t) j is monotonically increasing. The
sequence therefore must converge to a limiting function, and it can be shown that this
function satisfies (2.21). It follows that 6{x, t) exists.

Although uniqueness may be examined within the context of the integral equation,
it follows directly from the initial-boundary-value problem by applying certain maximum
principles to the system of equations

yt(x, t) = yxx(x, t) + 2byx(x, t) x > 0, t > 0, (2.30)

2/x(0, t) = a exp [in - 1)(62 — h)t]yn(0, t) — exp [-(b2 - h)<]/(<), t > 0, (2.31)

y(x, 0) = 0, x > 0, (2.32)

y(x, <) —► 0 as t > 0 (2.33)

which is obtained by making a simple transformation of (1.1)-(1.4). Then if w(x, t) =
yi(z, I) — y2(x, t), where y, and y2 are two positive solutions to the above problem,
w(x, t) must satisfy the system

w,(x, t) = wXI(x, t) + 2bwx(x, t), x > 0, t > 0, (2.34)

».<0, I) = « exp Kn - l)(b- ~ Wflfcg; I : ^o, I), (2.35)
w(x, 0) = 0, x > 0, (2.36)

w(x, t) —* 0 as x —*■ oo; t > 0. (2.37)

Standard maximum principles (see e.g. Protter and Weinberger [5]) for operators like
(2.34) and subject to a condition like (2.36) indicate that if w(x, t) has a positive maxi-
mum it must occur along the line x = 0, t > 0. Moreover, a derivative in an outward
direction, in particular in the — x direction, must be positive where the maximum occurs.
For yi >0,y2> 0, this contradicts (2.35); hence w(x, t) cannot have a positive maximum,
or w(x, t) < 0. Exactly the same arguments apply to w'(x, t) = y2(x, t) — yi(x, t) and
thus imply w'(x, t) < 0. The conclusion, of course, is that yAx, t) = y2(x, t). Notice
that the positivity of the coefficient of w(0, t) in (2.35) is crucial to this proof and this
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situation can be assured only if yx (x, t) and y2(x, t) are positive. This proof therefore
verifies that there is only one positive solution of the problem but does not preclude
the possibility of negative solutions. These, however, would not be physically significant
and the possibility is not considered further.

3. Bounds on 6{x, t)(b > 0). Because pit) is arbitrary but non-neagtive, when
b > 0 we may set pit) = b in (2.1) to get the upper bound

6(x, t) < [ f(s)Kb(x, t;s) ds. (3.1)
Jo

Furthermore 0(0, t) is bounded, so there exists a p(t) = vi = constant such that — b —
<*0"-1(O, t) > 0, 0 < t < oo, or

0(x, t) > f f(s)KnX%, t]s)ds. (3.2)
Jo

These bounds may be improved by using them as a basis for choosing new p(t) with
the idea of making the integrand in the second integral of Eq. (2.1) progressively smaller.
Keller and Olmstead, in fact, do this to get a sequence of upper and lower bounds which
converge to the solution of their special case of (2.1).

Recall that for t > tc , jit) = 0, so that

[ t',s) ds < B{x, t) < [ j(s)Kb(x, t;s) ds, t > tc . (3.3)
Jo Jo

These bounds can be bounded, with the result

m
p t 2 f»t c

/ (x, t;s) ds < dix, t) < M / Kb(x, <;s) ds (3.4)
J t j J 0

because fit) is bounded and there exists a number m > 0 such that

j(t) >0, 0 < t < U ,
> m, U < t < t2 , (3.5)

>0, t2 < t < tc .

Inequalities (2.19) and (2.20) may be employed to yield the bounds

m «p [-«( - « - ['■ 2,i(1 _ a)1 + I
(\x + 2t?1(< - s)~|/ra; + 2^it - s)

AL 2 (t-s)i/2 JlL 2(t — s)1/2 . ds

< «(x, o < M exp [-Mi - Q - I" {-,v—+ |
(\x + 2 b(t — s)"|/fx + 2 b(t — s)T l\\ 1

AL 2(t — s)1/2 JlL 2 (t-sf/2 J +2 J J ds. (3.6)

These integrals can be evaluated explicitly, but the results are too complicated to be
very instructive. Asymptotically, however, these bounds become
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m(t2
O 1/2 f"V" + o(r"V") < 0(x, t)~ [i + *] exp ["' _ icT^S)]'

< |jj + zj exp - |Jr3/V' + o(f3ne~ht) as t —> oo. (3.7)

Notice that the asymptotic behavior of the upper bound is meaningless for 6 = 0.
We must therefore examine this case more closely. Eq. (2.11) shows that K0(x, t; s)
has a particularly simple form. The upper bound in (3.4) then becomes

»(*, I) < M jf °»P [-W - »V4(1 - .)! ds (3 8)

/ „ r x2~\ f'e exp [ — h(t — s)] ,< M exp [--J | -w(,_s)./. <b- (3.9)

The integral is easily evaluated with the result that

0(z, <) < -^72 exp ^ — ̂J {erf [ht]U2 — erf [h(t — tc)}1/2\ (3.10)

[-£]'
6(x, t) < (exp (htc) — 1) exp | — j-, |< 1/2e h> + o(t 1/2e "') as <—>«=. (3.11)

There is still an ii, > 0 which provides a lower bound on 0(x, t), and the asymptotic
behavior of this lower bound is known from previous calculations. Unfortunately,
these results do not indicate the form of the asymptotic behavior of d(x, t) nearly as
specifically as the results for b > 0. Observe, however, that for h > 0 a constant B
can be chosen sufficiently large so that Bt~l — 0"~'(O, t) > 0, t > 0, n > 1. This can
be done for h > 0 because 0(0, t) is bounded and decays no more slowly than 0(e~h't~1/2)
as t —> oo. If h = 0, such a constant can be chosen only for n > 3. With p(t) = p*(t) =
aBt l, Eq. (2.1) becomes

0(x, t) = f f(s)Kf,(x, t',s)ds + a f [Bs~l — 0n_1(O, s)]0(O, s)K„,(x, t]s) ds (3.12)
Jo Jq

9(x, t) > f f(s)K„.(x, t; s) ds. (3.13)
Jo

As before,

6(x, t) > m I> „.{x, t; s) ds for t > t2 (3.14)

and from (2.10) as t —» co

«<», i) > ' "Pi"1'
7T

/ exp [ — 2aB£1/2] / s exp (—£s) ds d£
-Jo Jh

rvV" + o(t' e').

(3.15)
Physically, it is almost obvious that 0(x, t) must approach zero for b > 0, h > 0
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or for b > 0, h > 0 because /(<) is the only source of the diffusant while both b and h
represent losses. In fact, even for b = h = 0

-2/4(t. - s)l .
as t»(*,«< 0

What is more surprising is that the nonlinearity has no effect on the form of the large-
time asymptotic behavior. This is evident from the fact that none of the previous analyses
is changed by setting a = 0 in Eq. (2.1), and thus

6(x, t) = [ f(s)Kb(x, t; s) ds.
Jo

Apparently h affects only the exponential decay and the form of the algebraic decay
depends only on the value of b. Physically, this is reasonable because adn~\0, t), the
nonlinear radiation coefficient, becomes negligible relative to b as t —» . In summary,
then, conduction must account for the t'1/2 decay, linear radiation changes the algebraic
rate of decay to T3/2, and the nonlinear radiation (n > 1) has no affect on the large-
time decay rate of the temperature.

4. Bounds on 9{x, t)(b < 0). It is more difficult to get very specific bounds on
9(x, t) for b < 0. In this case, setting p(t) = 0 in (2.1) yields only that

d(x, t) < f j(s)K0(x, t; s) ds — b f 6(0, s)K0(x, t; s) ds.
Jo Jo

Physically, b < 0 implies that energy is being absorbed at a rate proportional to the
surface temperature, so there is no reason to expect an upper bound on the solution to
depend only on the source j(t).

Let — b = /3 > 0 and rewrite (2.1) as

9(x, t) = [ j(s)Kp(x, t;s) ds + [ jp(s) + [/3 — aBn'\0, s)])0(O, s)K„(x, t; s) ds. (4.1)
J o Jo

In this form we see that the difficulty lies in the fact that the quantity [/? — ad"'1 (0, 8)]
may change sign. For example, if /3 < ad" '(0, t) there is a p(t) = t]2 = constant such
that 772 + /3 — a0n_1(O, t) > 0, 0 < t < «> and d(x, t) is bounded from below by

9(x, t) > [ f(s)K^(x> <;s) ds.
Jo

On the other hand, if /3 > adn~1(0, t) then p(<) = 0 will do and

Six, t) > f f(s)K0(x, t; s) ds.
Jo

The behavior of these integrals has been investigated, but there is no indication as to
which lower bound is appropriate. The situation, of course, is not hopeless; it just requires
a slightly different approach.

Define u(x, t) by the equation

u(x, t) = I af(s)K0(x, t; s) ds + / /3u(0, s)K0(x, t; s) ds. (4.2)
J 0 Jo

Let p(t) = 0 in (4.1) and consider the difference
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u(x, t) — 0(x, t) = [ adn(0, s)K0(x, t;s) ds + 0 [ [u(0, s) — 0(0, s)K0(x, t\ s) ds (4.3)
J 0 ^0

or, for w(x, t) = u(x, t) — d(x, t),

w(x, <)' = f adn(0, s)K0(x, t) s) ds + /S [ w(0, s)K0(x, t; s) rfs. (4.4)
Jo Jo

It is a simple matter to solve for u(x, t) and incidentally to prove that w(x, t) > 0. Thus

n, ^ ^ / a [' j/\/exp [ — h(t — s) — x2/4:(t — s)]
e(x,t) < u(x, t) = /(s)j  ^1/2 ' _ ^

+ (3 exp [-/3a; + (,82 - h)(t - s)] erf _ g)1^ ~~ ̂  ~ s^/2]} ds'

The integral is a decreasing function of x, so for the sake of getting more specific in-
formation look at the concentration at x = 0 for t > te . Here

0(x, t) < exp [(/32 - |8/(S) exp [-(/32 - h)&]( 1 + erf [/3(i - s)1/2]) dsj

+
f'lt s exp [ — h(t - s)] ,

I T^(t _ s)'/2 ds. (4.6)

As before, the right-hand side of this inequality can be bounded to yield the result
that as t —* 0°

0(0, t) < exp [(/32 — A)i]^2 (3j(s) exp [ — (/32 — h)s] ds + o{t 1/2 exp [ — p2t])j- (4.7)

Since 0(0, t) is bounded this offers no new information for /32 — h > 0. If /32 — h < 0,
however, (4.7) proves the physically obvious fact that the temperature must approach
zero if energy is being lost along the length of the rod faster than it can be absorbed
at the end.

Because of this bound and the fact that 0(0, t) is bounded, there is certainly a constant
such that 0(0, t) < exp [(/J2 — h)t], 0 < t < , 02 — h < 0 and

0(0, t) > [ f(s)K,(0, t; s) ds + [' {P(s) + 0 - al,-1 exp [(n - l)(/32 - h)s]}
Jo J 0

■ 0(0, s)Kp(0, t; s) ds. (4.8)

With the choice of p(t) = p'(t) = aMT-1/((n — 1) |/32 — c| t), this inequality becomes

0(0, t) > [f(s)Kp.(0, t; s) ds + f {13 + aMr\[(n - 1) |/32 - h\ s]"1
Jo Jo

— exp [(n — l)(/32 — h)s])\6(0, s)K/(0, t; s) ds. (4.9)

The integrand is obviously positive, so, as before,

I «P [-(„ _2°"> - 4| £'"] I s exp (-»<&«]
+ (4.10)

0 t) > m exp (>l.)
7r
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as t —> a>.
For /32 — h > 0 we still do not have a well-defined upper bound and there are two

choices for a lower bound depending on whether [i > a0"_1(O, t) or (3 < aO" '(0, t). Let
us investigate the consequence of assuming that (3 > a0"_1(O, t); in particular, let

0 - adn~\0, t) = n + A(<) (4.11)

where m > 0, A(£) > 0 and there is a time <' such that A(<') = 0. Now (4.1) with p(i) = 0
can be rewritten as

6(x, t) = f f(s)K0(x, t;s) ds + f [m + A(s)]0(O, s)K0(:k, i; s) ds. (4.12)
Jo Jo

As before, define u(x, t) to satisfy the linear problem

u(x, t) = / j(s)K0(x, t; s) ds + / jm(0, s)K0(x, t; s) ds, (4.13)
Jo Jo

and then w(x, <) = d(x, t) — w(z, <) must satisfy the equation

(z, t) = [ A(s)0(0, s)K0(x, t;s) ds + [ w{0, s)K0(x, t; s) ds. (4.14)
Jo «'o

Notice that (4.13) and (4.14) are of exactly the same form as (4.2) and (4.4), so we
immediately have the result for t > tc

0(0, t) > exp [(m2 — h)t]

m/(s) exp [-(M2 - A)*] {1 + erf [n(t - s),/2]} ds + e~k> £ f(s) gy,2 ds.

If m2 — h > 0, the fact that 0(0, t) is bounded is contradicted; hence // < h. Therefore
from (4.11)

«0"_1(0, t) > 0 - h1/2 - A(<) (4.15)

and at £ = £'
a0"_1(O, t')>0 - hu2 > 0. (4.16)

Since it is certainly possible for /(<) to cut off before 0(0, t) achieves the value implied
above, the linear absorbtion must be responsible for forcing the temperature to reach
this value. It is therefore reasonable to expect that there is no time beyond which the
temperature can always remain below the value [«~1 (/3 — h1/2)]1/n~\

That this is, in fact, the case is easily proven by restating (1.1)—(1.4) as

0T(x, t) — dXI(x, t) — hd(x, t), x > 0, r = t — t0 > 0, (4.17)

0«(O, r) = a0"(O, r) — /30(O, r), r > 0, (4.18)

0(x, 0) = \p(x), x > 0, (4.19)

d(x, t) —> 0 as x ^ 00 ̂  (4.20)

where t0 > tc but otherwise arbitrary. This problem may be expressed as an integral
equation in the form
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8(x, r) = f il/(y)Kp(x, t- y, 0) dy + [ [p(s) + 0 - adn~\0, s)}6(0, s)Kp(x, r; 0, s) ds
Jo J 0

(4.21)
where Kp(x, r; y, s) = K„(x — y, r; s). If it is again supposed that /3 — a0"_1(O, r) =
ju + A(r), ju > 0, A(r) >0 and A(V) = 0, an analysis similar to that just used follows
to yield the same contradiction unless < h. Since t0 is arbitrary, the desired result
is proven.

The converse—that there is no finite time beyond which a(f-1(0, t) > /3—is very
easily proven. If there were such a time, say t = I*, then (4.1) could be rewritten as

0(0, t) = f f(s)K0(0, <; s) ds + f [/3 — adn~\0, s)]0(O, s)K0(0, t; s) ds
Jo Jo

fJ t*
[«r_I(0, s) - jS]0(0, s)K0(0, t; s) ds.

This, however, implies that 9(0, s) —> 0 as t —» which contradicts the original hy-
pothesis.

In summary, then, if the limit exists when /32 — h > 0,

(3 - h1/2 < lim a(T~\0, t) < p.
t-*ca
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