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Abstract. In this work we consider a boundary-value problem arising from the
transverse vibrations of a slender, finite, uniform rod which rotates with constant
angular velocity about an axis through the rod's fixed end. The relevant dimensionless
parameter is assumed to lie in a range corresponding to rapid rotation. The differential
equation in this problem is fourth-order, linear, and takes its distinctive character
from the simple turning point where the coefficient of the second derivative term van-
ishes. A significant feature is that the turning point is also a boundary point and hence
outer expansions alone are not adequate for formation of a characteristic equation.
Approximations valid at and away from the turning point are obtained and related
through the method of matched asymptotic expansions. Outer expansions are required
to be "complete" in the sense of Olver, and approximations are found for the Stokes
multipliers which describe the analytic continuations of these expansions across Stokes
lines in the complex plane. A consistent approximation to the characteristic equation
is obtained, and the limiting behavior of the spectrum is derived analytically.

1. Introduction. In this paper we consider a boundary-value problem consisting
of the fourth-order differential equation

</,iv - |a(l - vV + aW - a\<f> = 0, —1 < 2/ < 0 (1.1)
and the boundary conditions

*(0) = <*>'( 0) = <*>"(-1) = <*>"'(-1) = 0 (1.2)
where 4> = <t>(y) and a is a dimensionless parameter assumed large, real, and positive, i.e.

ph a = 0 and a » 1. (1.3)

The distinctive character of Eq. (1.1) comes from the simple turning point at y = —1
where the coefficient of 4>" vanishes. A significant feature of the boundary-value problem
is that this turning point is also an endpoint. Hence, a characteristic equation for the
eigenvalue X cannot be formed using only approximations valid away from the turning
point.

The reduced equation obtained by formally letting a tend to infinity in (1.1) is of
second order, and we are thus dealing with a singular perturbation problem. Inner
approximations valid at and close to the turning point and outer approximations valid
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away from the turning point must be obtained separately and then related so that they
asymptotically represent the same solutions (the central matching problem). We will
use the method of matched asymptotic expansions. As usual, the variable y will be
assumed complex, and we consider bounded domains in the complex plane which contain
the real interval [—1, 0], We also require that domains of validity are suitably restricted
so that all outer expansions are complete in the sense of Olver [8]. Inner and outer
approximations are matched using the asymptotic matching principle in the form stated
by Fraenkel [3]. Approximations are also derived for the Stokes multipliers which
describe the continuations of outer expansions across Stokes lines in the complex plane
(the lateral connection problem). Using the matched approximations, we obtain a
consistent approximation to the characteristic equation and derive analytically the
limiting behavior of the spectrum as a tends to infinity.

Eq. (1.1) is sometimes written in the modified form

- Ml - 2/V + ay*' - U = 0. (1.4)
This equation is clearly appropriate for small a and has also been used by Boyce, Di
Prima, and Handelman [2] who, by means of minimum principles, have obtained bounds
on X for small to moderately large values of a. However, in the present asymptotic
analysis for large a, this scaling of the eigenvalue is not consistent. The boundary condi-
tions imply X = 0(a) which, in turn, leads to a breakdown in ordering in approximations
to solutions of (1.4).

The boundary-value problem (1.1) and (1.2) arises in connection with the vibrations
of a slender, uniform rod of length I which rotates with constant angular velocity 0
about an axis through the rod's fixed end. We obtain Eq. (1.1) if the rod does not twist
and vibrations are transverse to the plane of rotation. If m is the linear mass density,
co the natural frequency of vibration, and EI the bending stiffness of the rod, the param-
eter a and eigenvalue X correspond to the ratios (see [1])

a = Wtpf and X = (w/0)2. (1.5)

Rapid rotation thus leads to large values of a. A frequency transformation derived
by Lo and Renbarger [6] may be used to reduce vibrations not transverse to the plane
of rotation to the present case. Recent interest in rotating rods stems from the effects
of flexible appendages on the overall stability of "spin-stabilized" space satellites.
The "pure spin" satellite reference motion of Hughes and Fung [4] is a solution of (1.1)
and (1.2).

The second- and fourth-derivative terms in (1.1) and the Orr-Sommerfeld equation
of hydrodynamic stability are quite similar, especially when the basic velocity profile
is plane Poiseuille flow. Indeed, the class of special functions we use to obtain inner
approximations has been developed by Reid [9] to study the Orr-Sommerfeld equation.
Beyond this initial similarity, however, there are significant differences. The first-
derivative term in (1.1) plays an important role at lowest order in all approximations.
Because of this, the first inner approximation to a partially balanced solution of (1.1)
requires the full generality of the special functions. The boundary conditions (1.2)
also differ from the conditions associated with the stability of parallel flows. We require
second and third derivatives at the turning point itself and the boundary point y = 0
lies directly on a Stokes fine in the complex plane.
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In what follows, a D or prime will always denote differentiation with respect to the
argument of the function involved. This work has been partially supported by the
National Research Council of Canada under grant number A7850.

2. Transformation to standard form. A preliminary transformation of Eq. (1.1)
will first be made which explicitly brings out the turning point nature of the problem.
We define the Langer variable ij by

v = |[3£(i -y2)U2 dy]2/3 ■ (2.i)

Then, r)(y) is analytic at y = — 1 and has the expansion

v(y) = (y + l) - ^ {y + l)2 - ^ (y + l)3 + • • • . (2.2)

Thus, bounded domains in the y-plane containing the turning point y = — 1 are mapped
by relation (2.1) on bounded domains in the 77-plane containing the origin. We next
define a new dependent variable x(v) by

x(n) = <t>(y)- (2.3)
Under this change of both independent and dependent variables, Eq. (1.1) becomes the
required standard form

e3Xiv + 6e3rx'" - (1? + *h)x" - (ho + e%)x' - = 0 (2.4)

where

« = a~1/3, ph e = 0, e « 1, (2.5)

and y, /i , h0 , and ht are all analytic functions of y in bounded domains containing
77 = 0. The function 7(17) is defined by the relation

y(v) = v"/v'2 (2.6)

and near 7? = 0 it has the expansion

y(v) = 7o + To'i? + • • • , To = —| and y0' - (2-7)

In terms of 7, the remaining coefficients in Eq. (2.4) are

K(v) = 1 + 3yy, K(v) = —y" — lyy' — 67s, /1(??) = — 47' — II72. (2.8)

Eq. (2.4) is not in normal form since a third derivative appears, but this does not cause
any difficulties.

Approximations to solutions of Eq. (2.4) exhibit certain symmetries in the complex
r;-plane. To take full advantage of this fact, we will seek asymptotic expansions for
seven exact solutions. While the forms of these exact solutions are, of course, unknown,
the solutions may be specified by their asymptotic properties. Thus, to within a multi-
plicative constant, we may uniquely define four solutions as follows:

(i) The solution U0(y) is well balanced in bounded domains containing the turning
point j? = 0.
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(ii) The three solutions Vk(ri) are recessive in the sectors Sh bounded by anti-Stokes
lines (k = 1, 2, 3; see Fig. 1). To within multiplicative constants and multiples of U0 ,
we may also uniquely define three additional exact solutions Uk(rj) by the properties:

(iii) The solutions Uk(ij) are purely balanced in the sectors Tk bounded by Stokes
lines (fc = 1, 2, 3; see Fig. 1).

With the exception of U0{ri), these solutions, or more precisely their outer expansions,
exhibit the Stokes phenomenon. Since the equation is only fourth order, the seven exact
solutions must be related through three exact (but unknown) connection formulas.
One aim of this work is to derive approximations to these exact relations and hence
obtain approximations to the Stokes multipliers which specify the required analytic
continuations of the outer expansions.

3. The inner expansions. In this section, we wish to derive (inner) approximations
valid close to and at the turning point: Balancing the first, second, and fourth derivative
terms in (2.4) shows that the critical layer at ij = 0 will have thickness 0(e). Accordingly,
we define the inner variable £ by

£ = vh (3.1)
and let

X© = x(v)- (3.2)
With this scaling, the relevant form of (2.4) near the turning point now becomes

+ 6ey(f£)x'" - R + e2fM)]x" ~ [1 + 3e£7(^) + eV*)]*' - 6Xe"4(e£)x = 0 (3.3)

where the function

e{v) (3-4)

denotes r;' re-expressed in terms of ij. Eq. (3.3) suggests inner expansions of the form

x=Exu,(£K. (3-5)
71 = 0

Using this relation, expanding the coefficients in (3.3), and equating powers of e to zero,
we now obtain a sequence of differential equations for the x<n). To write these equations

/—<

Fig. 1. The anti-Stokes lines (left) and the Stokes lines (right) in the ij-plane.
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in compact form, we let

D = d/df, A = D2 - I B = D2 + A. (3.6)
Then

DAD x(0> = 0, (3.7)

DAD x(1) = 71x<0), (3.8)

DAD x<2) = Lxm + hx°\ (3.9)
etc., where h and I2 are the operators

11 — —3 y0BD + X,

h = -Wyo'BD - j\) + (117S + 47o')D2].
(3.10)

We wish to obtain partial sums for seven inner expansions which will be denoted
by w0(£), Uk(£), and vk(£) (k = 1, 2, 3). These expansions are defined by the requirement
that as |£| —► + 00 they have same asymptotic behavior as the seven exact solutions
U0 , Uk , and Vk , respectively. Thus, u0 must be well balanced, uk must be balanced
in Tk , and vk must be recessive in Sk . These conditions uniquely specify u0 and Vk to
within a multiplicative constant. However, care must be taken with the Uk since, in
addition to the normalization factors, arbitrary multiples of u0 may be added to these
expansions without changing their asymptotic properties.

The eigenvalue X first appears in (3.5) at order e and, in fact, to obtain a consistent
first approximation to Uo'"(0) one must go to order e3. A large number of particular
solutions for inhomogeneous fourth-order equations are thus required. Fortunately,
a class of special functions developed to study solutions of the Orr-Sommerfeld equation
can also be used in the present problem. These generalized Airy functions are discussed
by Reid [9] and we therefore list below only definitions and relevant properties.

The junctions AJk', P, q) and Bk(%; p, q) (k = 1, 2, 3). If Ck denotes either Ak or Bk,
these special functions are defined by the contour integrals

Cite; p, q) = 2J r" 1 exP ~ <3/3] dt (3.11)

where the paths of integration £k for A k and (Pk for Bk are as in Fig. 2. When q = 0,
we write

A.ft; V, 0) = A&, p). (3.12)
In particular, Ak(£, 0) is the usual Airy function. Similarly, when q = 0 the paths of
integration (?k can be closed to give the path (P„ which is a circle centered at t = 0.
In this case, we write

Bk(b p, 0) = Bo(l, V)- (3-13)
Using residues, one easily obtains

Bote, V) = 0, v < 0, 14)
= HQ, V = 1, 2, 3, • • • ,

where bv(£) is a polynomial of degree p — 1 and
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2vi/3

0 < ph t < 2tt

4iri/3

Fig. 2. The paths of integration £* (left) and (Pi (right) in the complex <-plane for the functions
Ak(£; P, </).aiid Bi(f; p, q) respectively (k = 1, 2, 3). For index q = 0, the branch cut along the positive

real axis is unnecessary and the paths 9k may be closed to form the circular path (P0.

&i(0 = 1, HQ = £, b,(Q = | , b4(Z) = fj" - | , etc. (3.15)

Derivatives of Ck(£; p, q) are given by the simple relation

DmCk(£; p, q) = Ck(£; p - m, q). (3.16)

Similarly,

q+ 1) = ~^C>(£;p, q). (3.17)

If so desired, the recursion formula

C*(S; V ~ 3, q) ~ $C*d; p - 1, q) + (p - 1 )Ct(f; p, q) - qCkfc p,q - 1) = 0 (3.18)

makes it sufficient to restrict p to the range — 1 < p < 1.
By using Cauchy's theorem, exact connection formulas relating the various functions

can be obtained. For q = 1, these have the form

B3(£; p, 1) - Bid; p, 1) = 2iriA2(£, p)

■Bi(f; P, 1) - B2(£; p, 1) = 2itiA3{£, p) (3.19)

B2(£; P, 1) - B3d; V, 1) = 2«'[Aid, p) + Bod, P)1

A further general relation is

X) Akfc p, q) = —Bjd; p, g). (3.20)

The asymptotic properties of these generalized Airy functions are similar to the
properties defining the exact solutions of equation (2.4). As |£| —» + », B0d, p) is well
balanced, Btd; P, ?) with q ^ 0 is balanced in the sector Tk, while Ak(£; p, q) is recessive
in the sector Sk . In particular, for £ G T2 VJ Ta , A^, p) has the expansion
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A,(S, p) - fr-W2 exp (-pri)r(2r+1>/4 exp (-f) £ (-l)mam(p)rm
m = 0

(-Y<PhZ<j) <3-21)

with f = §£3/2, a0(p) = 1, Oi(p) = A(12p2 + 24p + 5), etc. For £ 6 7\ , Bi(£; 1, 1)
has the expansion

*,(£; 1, 1) log* ~ T + E (3^~,1)! r3™ (-y < pM < o) (3.22)

where y here is the Euler constant. Expansions for different values of p and q may be
obtained using (3.16) and (3.17), while C2 and C3 may be obtained from C, by replacing
£ in (3.11) by £ exp [±2«'/3].

The generalized Airy functions are solutions of the differential equation

(AD + p - 1 )C*(£; p, q) = qCkfc p, q - 1). (3.23)
Since (?*(£; p, q) = DCk(£; p + 1, q) and DAD = (AD — 1 )D, Eq. (3.23) thus leads to
the differential equation

DAD Ck(£; p + 1, q) = -pC*(£; p, q) + gC*(£; p, q - 1) (3.24)
required in the present problem.

The expansion u0 (£). Consider now the inner expansion u0 which must be well
balanced as |£| —» +<». Eqs. (3.7), (3.24), and the required asymptotic behavior give
that m0(0> must be a multiple of B0(£, 1)- If we set the normalization constant in w0(0)
to unity and require that for n > 1 u0(n> contains no multiple of u0(0', then

«o<o>0D = £„(£, l) = l,

flo(1,ft) = -H, (3.25)

«o<2'(£) = i[X2 ~ M2,

etc. Thus, in terms of the outer variable 17 = «£, u„ has the form

Ho = [1 - X, + i(X2 - i\)v +•••] + 0(e3). (3.26)

The expansions vk(£) (k = 1, 2, 3). These inner expansions are uniquely defined up to
multiplicative constants by the requirement that as |£| —> + °° vk must be recessive in
the sector Sk . Thus, vk'0> must be a multiple of Ak(£; 1). Setting the normalization
constant to unity and requiring that for n > 1 vt'n> should contain no multiple of vk0),
we easily obtain

vk<0) = At& 1), (3.27)

vk(t> = -hoAk(t, -1) - \Ak(H, 2), (3.28)
and

= ![§7o2 - To']A*(f, -3)

+ [5X + §y0X — 2y02 + 2yo']Ak(!;, 0) (3.29)

+ | [X + 3To - 3).
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Since At(£, 0) will appear in the inhomogeneous portion of the equation for vk3), a term
involving 1, 1) is present in vk at order e3.

The expansions uk(£) (k = 1, 2, 3). As [£j —> + ^ the three inner expansions uk
must be balanced in the sectors Tk , and to obtain even the first approximations uk""
a nonzero index q is necessary. The asymptotic behavior implies that uk0) must involve
a multiple of Bk(£\ 1, 1). However, care must be taken since adding an arbitrary multiple
of m0<0> will not alter the asymptotic behavior. Thus, uk0) must be of the form

uk"" (?) = ckBk(&; 1, 1) + bkB0& 1)

where bk and ck are normalization constants. If we require that uka' should contain no
multiple of u0<a>, then we must choose bk = 0. However, this does not imply that for
n > 1 the higher approximations uk'" will not contain multiples of /?„(£, p) with p > 1.
Indeed, ukn) will in general contain a well-balanced term in addition to the portion
involving Bk(%\ p, q) with q nonzero. To complete the normalization of these expansions,
we set ck = 1 and require that for n > 1 ukn) should contain no multiple of wtl0). We
now find

fl*(0)© = Bk ft; 1, 1), (3.30)

= 2, 1) - hoBk& -1, 1) + (37o - A)f, (3.31)

ukm(0 = | [X + 37„ - l]Bk(H; 3, 1) + l[fTo2 - y0']Bk(^ -3, 1)

+ [MIto + I) — 27o2 + 2y0'\Bk(!j; 0, 1)

+ J[3X2 - X(37o - i) ~ 187o2 + 6y0T, (3-32)

etc. For n > 1, the expressions for uk'3n), Mt<3n+U, and uk3n+2) will in general involve
terms containing Bt(^; p, q) with q = 0, 1, • • • , n + 1.

4. The outer expansions. We now wish to derive seven outer expansions valid
away from the turning point. These expansions will be denoted by u0(-q), uk(-q), and
Vk(v) (k = 1, 2, 3) and are defined by the conditions that u0 is well balanced, uk is balanced
in Tk , while vk is recessive in Sk . We will also require that all of these expansions must
be "complete" in the sense of Olver [8], Basically, this implies that different asymptotic
representations of a given solution must have their domains of validity restricted to non-
overlapping sectors bounded by Stokes lines (although, in the usual Poincare sense, the
expressions remain valid in larger overlapping regions). The importance of using complete
expansions for fourth-order equations has been shown by Lakin and Reid [5] in a study
of the Orr-Sommerfeld equation.

The expansions u0(ti) and uk(tj). To obtain the well-balanced and partially-balanced
outer expansions, we will assume a formal expansion x(-q) of the form

x= ixw(vV". (4.1)
n = 0

Substituting (4.1) into (2.4) and equating powers of «3 to zero now gives the sequence
of relations

£xl0> = 0 (4.2)
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£x = 311* , n > 0, (4.3)

£> = V ~^2 + [1 + 3777(77)] — + X77' 4 (4.4)

W = + 67(77) ~s - Uv) - ht(v) (4.5)

Power-series solutions of (4.2) may be obtained by the method of Frobenius. One solution
is analytic at 77 = 0 and thus corresponds to a multiple of un{'". If we normalize so that
w0<0>(0) = 1, then

Uo'°\v) = 1 — X»J + | — I)'?2 + 0(„3). (4.6)

Note that this is simply the lowest-order term in w0(£) expressed in terms of the outer
variable 7? (see (3.26)). For n > 1, Mr/"' will contain no constant term and hence
w0("'(0) = 0.

Let w)(tj) denote an expansion of the form (4.1) such that ws" is the second Frobenius-
type solution of (4.2). This solution has a logarithmic branch point at the origin and is
of the form

ww(r,) = P(ri) + Mo'0'(77) log 77 (4.7)

where P(ri) is a series in powers of 77 and P(0) ^ 0. To facilitate matching to the inner
expansions, we will choose P(0) = 7, the Euler constant. With this normalization,

P(v) = 7 + j + X(2 - 7)], + [370' - | + i (7 - I) - J (T " 3)]
+ 0(„3). (4.8)

To fix the branch in (4.7), it is convenient to place a cut along the negative real 77-axis
and consider ph 77 in the range

— IT < ph 77 < 7T.

However, a single exact solution of (2.4) cannot be asymptotic to w for all ph 77 in this
range. In the complete sense, w is a valid asymptotic representation for a given exact
solution of balanced type only in a sector of angle 2ir/Z bounded by Stokes lines. We
thus define the three outer expansions uk by the relations

u2(v) = w(n) for v E T2,

u3(v) = w(y) for 77 E T3 , (4.9)

Mi(77) = w(77) for 77 G &2 Ti .

On crossing the branch cut, m, (77) may change its form but not its value. Thus, to define
iii in the remainder of 1\ , we must take into account the multiples of 2tri which are
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introduced by the logarithmic portions in w "' for n >0 (see (4.7)). In particular,
since wo<o>(0) = 1, we must have

fli(u) = w(v) + 2 ri + 0(«3) for iGS.nT,. (4.10)

The equation £x"" = 0 is simply a transformed version of the reduced equation

-§(i - y2)<t>"(y) + y<t>'{y) - H(y) = o
which, in the complex //-plane cut from — 1 to — °°, has as linearly-independent solutions
the Legendre functions Pv(y) and Q„(y) with v(v + 1) = 2A. For later use in the boundary-
value problem, we note that on the real interval y £ (—1, 0] w<0) and u>w can be ex-
pressed as the linear combinations

m0<0) = a0(v)Pv(y) + P0(v)Q,(y), ^ ^

w><0) = a(v)Pv(y) + P(y)Qv(y)

with
2

a0(v) = cos (yir), /30(p) = — -sin(w),
7T

a(y) = [log 2 — i(v + l)]a0W — o(v), (4-12)

/3(f) = 2a0(») + [log 2 — \p(v + l)](30(v)

where ip(z) = T'(z)/T(z) is the digamma function.
The expansions vk(r)). To obtain the outer expansions vk which are recessive in the

sectors Sk , we will use the WKBJ technique. Letting

x(v) = exp{/ g(v)dij^ (4.13)

and expanding <7(77) in the form

g(v) = *~3/2go(v) + gi(v) + ^/2gi{n) + , (4.14)

we obtain a sequence of equations for gn(v) beginning with

<7o4 = Wo (4.15)
and

(tyo - 2r)fifo)0,i = — 6<7o2(^o' + ygo) + !7o(l + 3717) + ?7<7o'. (4.16)

Eq. (4.15) gives g0(ri) = 0 or g0(^) = ±-qU2. Since the trivial solution would lend to an
expansion of balanced type, we must have g0(v) = ±v'2 and hence

ff.oo = -J V - bin) + ko"2.
^ y 0

The transformation (4.13) now gives the WKBJ approximations

v± = i*-1/2e3/i(vv'T3/i exp {±|e-3/2r,3/2}-G±(V> *3/2) (4.17)

where G±{t), e3/2) is the Poincar6 series

G±(V, e3/2) = 1 + £ (±l)ne3n/2GB(r)). (4.18)
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The normalization factor §7r~I/2e3/4 in (4.17) has again been chosen so as to facilitate
later matching to the inner expansions, and the eigenvalue X first appears in (4.18) at
order e3/2. To fix the branch in these expressions, it is convenient to place a cut along the
Stokes line between and T2 so that ph ?? is in the range

— 471-/3 < ph n < 2tt/3. (4.19)

In the complete sense, a given exact solution Vk of (2.4) can be asymptotic to v+ or £»_
only in a sector of angle 2ir/3 bounded by Stokes lines. Accordingly, we define the three
outer expansions vk by the relations

(4.20)
v2 = iv+ , r, e T, W T3 , (4.21)

V3 = -iv+ , V G T2 . (4.22)

On crossing the branch cut from T2 into T, , we again note that the form of v3 will
change but its value must remain the same. Since, beginning with G2(v), the expansions
about r? = 0 of coefficients in (4.18) may contain logarithmic terms, we must therefore
have

va = Ml + 0(e3)} for v E . (4.23)

The expansions uk and vk are not, of course, valid at the turning point itself. However,
they remain valid asymptotic representations for solutions of Eq. (2.4) down to |ij|
greater than order e.

5. The central matching problem and composite expansions. To solve the central
matching problem, one wishes to relate inner and outer expansions so that they represent
different asymptotic approximations to the same solutions. For our case, normalizations
will be fixed by assuming that the outer expansions of the previous section are asymptotic
to the exact solutions of Eq. (2.4). Thus, when |r;| is larger than order t, we have

Uo(y) ~ WoM, Uk(v) ~ Vk(v) ~ vk(ij). (5.1)

Close to the turning, the exact solutions must now be asymptotic to the combinations
of inner expansions

Uo(v) ~ Bo(e)tto(li),

uk(v) ~ Ck(t)uk(£) + Bk(t)u0(Q, (5.2)

Vk(v) ~ Dk(e)Vk(£)

where the quantities B0 , Bk , Ck , and Dk above (which depend only on t) are known as
the central matching coefficients. With our normalizations, the convergent series u0
and u0 are simply different representations of U0 and hence B0(t) = 1. To obtain approx-
imations to the remaining matching coefficients, we will use inner and outer expansion
operators and the asymptotic matching principle [3].

Let f(ij, e) be a given function. Then, if Ev denotes the outer expansion operator,
Evj is the partial sum of the outer expansion for / up to and including terms of order t.
Similarly, if H„ denotes the inner expansion operator, HJ is the inner expansion for /
up to and including terms of order e". For -q in the overlap region 0 where both inner and
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outer expansions are valid, the asymptotic matching principle may now be stated in
the form

(EVHQ ~ HQEp)f = 0. (5.3)

To obtain approximations to the matching coefficients associated with the solutions
Uk(y), the matching must be performed with tj in the sector Tt where both uh and uk
(for [|| —» °°) are purely balanced. When p = 0 and q = 1, for rj G Tk H 0 we have

HxE0Uk = (5 4)

= 7 + [! + x(2 - 7M + [1 - X e a log 4
where y is the Euler constant, while

E0HJJk = E0H1[Cl(e)Uk(i) + Bt(e)u0(Z)]. (5.5)

These expressions suggest that Bk(e) and Ck(e) have expansions with respect to the
asymptotic sequence log «, 1, e log e, e, «2 log2 e, e2 log t, e2, • • • . The matching principle
with p = 3 and q = 4 now gives the approximations

Bk(e) = log e + 0(e3 log2 e) (5.6)

and

Ck(e) = -1 + 0(e3log «). (5.7)

For the solutions Vk{ri), the matching must be performed in the sectors Sk where
vk and vk (as |£| —* + °°) are purely recessive. However, because of the rapidly varying
exponential factors, the operator Ev cannot be applied directly. Rather, following
Reid [9], we define the "modified" outer expansion operators

E,* = G*EPG* (5.8)

where
n± J -1/2 3/4 — 3/4 ( . 2 -3/2 3/2 >(t = ^7r e V exp I ±fe r) J

(5.9)
= k"1/2r3/4 exp {iff2}

and for y G Sk 0 use the matching principle

(E^H, - HaEv±)f = 0. (5.10)
A short calculation now shows

Dk{t) = 1 + 0(e3 log e). (5.11)

In addition to their uses in the matching procedure above, the expansion operators
Ev and Ha can also be used to obtain composite expansions for the solutions of Eq. (2.4).
In particular, we may define additive and multiplicative expansion operators &p,a
and 9TCEi(, , respectively, by the relations

= [E, + Hq- EM.]/ (5.12)
and

<513)
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The term (or, because of (5.3), HaEvj) here is the common part of both inner and
outer expansions for f. Applying Ev or II,, to either of the above gives simply Evj or HJ,
respectively. The choice between the additive and multiplicative composite expansion
is usually based on convenience. At present, there is no rigorous theory giving reasons
for prefering (5.12) to (5.13) or conversely.

The outer expansion u0(v) contains the inner expansion m0(£) and is therefore a
composite expansion for the solution £/0(t?). This expansion is valid in the entire complex
77-plane I.

To obtain composite approximations for the solutions Uk(ri), we will use the additive
operator (iv,Q . In particular, if y is again the Euler constant,

(Zo.iUk = uk0) (i1) — Bk(£] 1, 1) — 7 — log £ + 2, 1) + £[7 — 1 + log |]}

+ §7o^fe-l, 1). (5.14)
This expression is valid in the fan-shaped region Tk \J N, where N, denotes the small
neighborhood of the turning point in which the inner expansions are valid (see Fig. 3).

To obtain composite expansions for the solutions F*(j?), we will use the multiplicative
operator with Ep in (5.13) replaced by the appropriate modifier operator Ev+ or
E~. We find that

9TCo.oF* = [ J^)1/2] 7 At(t, 1). (5.15)

This expression is valid in the region (I — Tk) W N,. In additional sectors of the complex
ij-plane, the composite expansions for both Uk and Vk will have somewhat different
forms involving the continuation of the relevant outer expansion across a Stokes line.
Although we will not explicitly do so, these forms can be obtained from the solution
of the lateral connection problem.

6. The lateral connection problem. Six of the seven outer expansions in Sec. 4
are valid in the complete sense only in restricted sectors of the complex jj-plane which
have Stokes lines as boundaries. The continuation of outer expansions across these
bounding Stokes lines is called the lateral connection problem. A solution of the lateral

n-plane

Fig. 3. Restricted domains of validity for the composite expansions £/3(jj) (left) and yHp,qVi(ri)
(right) in the i;-plane.
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connection problem is, of course, included in a complete solution of the central matching
problem (but not conversely). In this section, we will derive approximations to the
Stokes multipliers which characterize the required continuations. This, in effect, corre-
sponds to deriving approximations for the connection formulas which relate the seven
outer expansions. If we knew the connection formulas for the exact solutions themselves,
it would be a trivial matter to obtain the relevant Stokes multipliers. Unfortunately,
these exact connection formulas are unknown. However, from the exact formulas
relating the special functions in Sec. 3, we can obtain approximations involving the
inner expansions. For example,

Hiiis H\Ui =- tZirzH 1^2 ,

Hitii — HiUi = 2wiHlv3 , (6.1)

while

H1U2 H iU3 = 1?) 1 ~f- H

As is consistent with (3.20), adding these gives the additional relation

ffi(»i + + 03) = -HiUo (6.2)

which is an approximation to a general relation of the form
3

22 Pi = 0o(«)«o + <3i(e)wi . (6.3)
; = l

Since Ak(£; 1, 1) first appears in ?*<3)(£), /3,(e) above must be of order e3. From the central
matching problem, we know which combinations of the inner expansions match to each
outer expansion in an appropriate sector of the complex plane. Hence, relations like
(6.1) and (6.2) allow determination of the Stokes multipliers.

The outer expansion of U0(v) is valid in all of I. Of the other six solutions, we will
consider explicitly only the two representatives U3(if) and V2(ji). The outer expansion
of U3(tj) in the sector T3 is u3 while the matched inner expansion is

U3 ~ C3(e)u3(Q + B3(«)«0(£).

On crossing the Stokes line into T1 , the outer expansion of U3 must discontinuously
pick up a multiple of v2 which is purely recessive in >S*2 . Similarly, on crossing the Stokes
line into T2 , the outer expansion of U3 must discontinuously pick up multiples of both
v1 and u0 . Formulas like (6.1) show that

U3 ~ u3 , y E. T3 ,

~ u2 + s0w0 + s2Vi , v G T2 , (6.4)

~ ux + Siv2 , j) E Tx ,

where u0 , Hi , Vi , etc. denote the expressions in Sec. 4 and the Stokes multipliers are
(with our normalizations)

So = —Si = s2 = 2irl[l + 0(e3 log e)]. (6.5)

There are similar expressions for U1 and U2 ■ However, for U2 the multiple of u0 is
present in the sector T3 rather than T2 and it is entirely absent in U, .
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The outer expansion of V 2{-q) in the sector T, VJ T3 is v2 while the matched inner
expansion is

V2 ~ D2(t)v2(t). (6.6)

Relation (6.3) implies that

V2~v2,

~ ~V3 + S3v 1 + S4w0 + SsMj , TJ G T2 ,

where the Stokes multipliers for this solution are

s3 = S4 = — 1 + 0(«3 log «), s5 = 0(e3). (6.8)

Similar expressions hold for Vi and V3 . We note that the outer expansion of V, is max-
imally recessive on the Stokes line ph 77 = 0.

The behavior of the outer expansions on the Stokes lines themselves is a somewhat
delicate question which has not yet been rigorously answered. However, the only choice
consistent with the exact connection formulas (3.19) and (3.20) is that the expansion
valid on a Stokes line should be the mean of the complete expansions valid on either
side of the Stokes line. Dominant terms in an expansion will thus be continuous across
Stokes lines.

7. The boundary-value problem. We now wish to use. the matched expansions of the
previous sections to study the boundary-value problem (1.1) and (1.2) (transformed
into the j? variable). A fundamental set of linearly independent solutions of Eq. (2.4)
consists of U0(y), one of the three solutions Uk(-q), and two of the three solutions Vt(ri)
(k = 1, 2, 3). We will choose the set

{Uo,U,,VltV9\ (7.1)

which is "numerically satisfactory" in the sense of Miller [7]. To express the boundary
conditions (1.2) in terms of 77, we let

Vi = v(0) = K3ir/2)2/a

and denote a general solution of Eq. (2.4) by x(v)- The first two conditions in (1.2)
now become

x(vi) = x'(vi) = 0. (7.2)

Conditions at the turning point r? = 0 are slightly more complicated. If the differential
operators ®2 and ®3 are defined by

^ d2 1 / \ d
®2 = d? + y{r,) '

d3 , r „ \ I 2/ d

«3 = ^3 + [Y M + 7 M] Tv

(7.3)

then the second two conditions in (1.2) become

®2x(0) = ffi3x(0) = 0. (7.4)



= 0. (7.5)
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Since x(v) must be a linear combination of the solutions in the set (7.1), conditions
(7.2) and (7.4) give a characteristic equation involving a four-by-four determinant. In
particular, we have

UoM u3(1/1) F.Oh)

Uo'iv 1) u3'M v/m V2'(vi)
(R2U0(0) (&2U3( 0) «2F,(0) ®2 F2(0)

ffi3t/o(0) ®3c/3( 0) ©3^(0) ffi3F2(0)

In this equation there are three distinct types of terms. We may write (7.5) as

3D + « + (R = 0 (7.6)

where terms in 3D involve a multiple of either V2(vi) or V2'(vi) and are dominant while
terms in (B and (R are balanced and recessive, respectively. Hence, for small e,

3D » « » (R. (7.7)

Using the matched inner expansions at the turning point and outer expansions at ?7i ,
we may write 2D as

3D/D1(t) = C3(e)W(u0 , t>2)(iji)9l(f>i , w3)(0)

— [W(u3 , v2)(vi) + — B3(f)}W(u0 , w2)(r7i)]9t(0i , flo)(0) (7.8)

where s0 is the Stokes multiplier in (6.4),

W(l g)(v) = f(v)g'(v) - f'(v)g(v) (7.9)
is a Wronskian, and

31(7, SK& = ®2/©«30(0 - (7.10)
The characteristic equation (7.5) is quite complex and a complete analysis of the

spectrum would involve extensive numerical computation. In the present work, our
aim is to obtain analytically the asymptotic behaviour of the eigenvalue A(e) as e —> 0.
Since this asymptote comes from the dominant terms in (7.5), we will therefore examine
the approximate equation

© = 0. (7.11)

Indeed, since the exponentials in both 3D and (R are maximally dominant and recessive,
respectively, for ph r/ = 0, by (7.7) Eq. (7.11) provides a consistent approximation to
the full characteristic equation for values of e only moderately small.

The first approximation to 3D is

= t>2<0)'(yi)u<)(0>(*?i)[® 1<0>"(0)m3(0)(0) - €>1(0)'"(0)a3<O)"(0)] + 0(e). (7.12)

Since v = Vi corresponds to y = 0, (7.11) and (4.11) now give that the first approximation
to X comes from roots of the equation

cos (v7t)jP„(0) — - sin (i/tt)Q,(0) = 0 (7.13)
7r

with v(v + 1) = 2X. This implies v must be an odd positive integer and hence, as e —> 0,
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X„(e) ~ n(2n - 1) n = 1, 2, 3, • • ■ . (7.14)

This result agrees with the lower bound obtained in [2] as the parameter mttf/EI gets
large. Hence, this asymptote is approached from above.
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