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Abstract. The method of characteristics is used to obtain solutions for the time-
dependent motion of a compressible plate driven by a one-dimensional shock or detona-
tion followed by a constant state. The plate can either move in contact with or separate
from the driver, depending on the values of the initial parameters. The motion of the
surfaces is described by a system of linear, first-order, ordinary differential equations
in one independent variable. The interior waves and interactions are determined from
the surface motions. The equation of state of the plate has the form described by
Murnaghan, specialized to produce straight characteristics in the x, t plane. The equation
of state for the driver is arbitrary. Closed-form solutions are obtained for the surfaces
during their first reverberations for particular driver equations of state. Numerical
examples are given which closely represent real systems. The results can be used as
standards for finite-difference calculations.

1. Introduction. The one-dimensional, time-dependent motion of a compressible
plate driven by a step shock or step detonation, i.e. one without a following Taylor wave,
is studied. The driver and plate are treated as inviscid fluids so that the Euler equations
govern the motion. Both the overmatch (reflected shock) and the undermatch (reflected
rarefaction) cases are treated. In either case the plate can separate from the driver
for certain values of the initial parameters. The equation of state for the plate has the
form described by Murnaghan [1], specialized to produce straight characteristics. The
equation of state for the driver is arbitrary, except for satisfaction of the Bethe-Weyl
conditions. One set of characteristics in the driver is straight since the flow is composed
of simple waves. Solution of the Euler equations under these conditions is reduced to
solution of a system of ordinary differential equations which are first-order and linear.
In certain cases, closed-form solutions and solutions valid for all time can be obtained.

The solutions display the nonlinear wave interactions which are the mechanism for
the acceleration of the interface and the free surface. They also furnish a convenient
way to study the effects of the initial parameters. Heretofore, solutions had to be obtained
by numerical calculation over a two-dimensional, space-time net. The solutions obtained
here can serve as a standard for comparing calculational methods.
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for their stimulating discussions and Harold Langley for his careful preparation of the illustrations.
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Similar boundary value problems have been studied by others. Pack [2] considered
an elastic plate driven by a step shock and obtained a closed solution for the plate motion
using Hooke's law as the equation of state. Aziz et al. [3] treated an incompressible plate
driven by explosion. They obtained a closed solution for the plate motion in the weak
shock approximation using a polytropic equation of state with y = 3 for the detonation
products. Ivivity and Kogan [4] considered a compressible plate driven by a flying plate
of the same material. They obtained a closed solution for the motion over a finite time
for certain plate thickness ratios. A Murnaghan equation of state with y = 3 was used.

The motion of a compressible half-space has also been studied. Ablow [5] treated
both the overmatch and the undermatch cases for an arbitrary plane wave in the driver.
He obtained a system of ordinary integro-differential equations for the motion of the
interface and the transmitted and reflected waves. The solution holds in the weak shock
approximation for Murnaghan equations of state. Fickett [6] treated the undermatch
case with a plane, unsupported, Chapman-Jouguet detonation in the driver. He obtained
ordinary differential equations for the motion of the interface, transmitted shock, and
particle paths. A polytropic equation of state with 7 = 3 was used for the detonation
products and the half-space was described by an equation of state due to Walsh (see [6]).
Ivivity and Kogan [7] considered a flying plate driver and obtained a closed solution for
the interface motion over a finite time using Murnaghan equations of state with 7 = 3.

The equations of motion and the plate equation of state are presented and discussed
in Sec. 2. Possible plate motions are discussed in Sec. 3. Sees. 4 and 5 treat motion without
separation and with separation respectively. Numerical examples are given in Sec. 6.

2. Equations of motion, initial and boundary conditions. The equations of motion
for the driver and plate are the one-dimensional, time-dependent Euler equations. In
characteristic form these are

dx/dt = u ± c, dp/du = =Fc/v, (2.1, 2.2)

where x, t, u, c, p, and v are the position, time, particle velocity, sound speed, pressure,
and specific volume. The upper and lower signs correspond to forward and backward
characteristics.

The driver equation of state is arbitrary, whereas a special form of the Murnaghan
equation of state is used for the plate. The general Murnaghan equation of state is

e(p, v) = (p + yb)v/(y — 1) + const. (2.3)

For the plate we specialize Eq. (2.3) by setting y = 3 to obtain

e(p, v) = (p + 3b)v/2 - 3bVi/2, (2.4)

where the constant is chosen so that e(0, vx) = 0. In Eq. (2.4), e is the specific internal
energy, b is a constant related to the initial sound speed, and subscript 1 refers to the
initial state. This specialization produces straight characteristics in the plate. This is
critical to reducing the problem to ordinary differential equations in one variable.
With Eq. (2.4), Eqs. (2.1) and (2.2) become

(x — xk)/(t — tk) = u ± c = uk ± ck , (2.5)

pc(u; k, T) = (pk + 6)[1 =F (u - uk)/ck]3 - b, (2.6)
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where k is a reference state and pe is the pressure on the characteristic curve through
state k. Both sets of characteristics are straight lines in the x, t plane. Eq. (2.4) is easily
shown to be the most general form that yields this result for isentropic flow. The following
relations derived for Eq. (2.4) are useful later:

a) the equation of an isentrope

p(v, a) = Z(a)v~3 — b, (2.7)

where Z is a function of the entropy, a,
b) the sound speed relation

c(p, v) = [3(p + b)v]1/2, (2.8)

c) the shock Hugoniot relations

pH(u-, k, ±) = pk + (u - uk)2/vk ± (u - uk)[(u — uk)2 + ck]U2/vk , (2.9)

pH(v; k) = [(pk + 3b)(vk - v) + pkvk\/(2v - vk), (2.10)

W(u; k, db) = u ± [(w — Uk)2 + ck"]1/2, (2.11)

where pH is the pressure on the Hugoniot curve, W is the shock velocity through state k,
and the upper and lower signs correspond to forward and backward shocks.

A constant-velocity piston at x = — initiates motion in the driver from rest and
zero pressure. Time is measured relative to the arrival of the shock or detonation at
x = 0. The interface is initially at x0 and the free surface, on which the pressure is zero,
is initially at Xi .

3. Shock/interface interaction and types of motion. The state behind the step
shock in the driver is determined when an equation of state, shock velocity, and initial
specific volume are specified. For high explosives, similar specification determines either
a Chapman-Jouguet, weak, or strong detonation [8], The initial pressure and particle
velocity are zero for both the driver and plate. The shock or detonation interaction at
the interface transmits a shock into the plate and reflects a shock, rarefaction, or no wave
into the driver accordingly as

> 0, reflected shock,

u,2/vips — (2 + 3b/ps)'1 = 0, no reflected wave, (3.1)

< 0, reflected rarefaction.

In Eq. (3.1) the subscript s refers to the state behind the initial driver shock or, in the
case of a high explosive, the detonation state.

The plate can move in contact with the driver or may separate from it. Both types
of motion can occur for any case described by Eq. (3.1). Figs. 1 and 2 show plate motions
without separation and with separation. In Fig. 1 a shock is reflected and in Fig. 2 a
rarefaction. Separation occurs if the zero-pressure particle velocity for the plate is
greater than the same quantity for the driver. This condition is expressed in Appendix A
for driver materials described by the general Murnaghan equation of state, Eq. (2.3).
Fig. 3 shows the ratio, f, of the shock impedance of the plate to that of the driver as a
function of the driver pressure <t> = pjb for an inert driver. The region below a constant
7 curve corresponds to separation. The sound speed parameter, b, is the same for both
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Fig. 1. Plate motion without separation in the overmatch case. The figure corresponds to solution of
numerical example 1 in Sec. 6, i.e. a 1.0-em thick aluminum plate driven by the high explosive

Composition B.

the materials. The curves represent solutions of Eqs. (A10), (A13) with S = 0, and
(A14). The region f > 1 corresponds to an overmatch and f < 1 to an undermatch.

4. Motion without separation. Fig. 1 shows the simplest wave structure for motion
without separation. This structure is common in practical problems. The single forward
and backward waves in the plate may, however, become multiple waves for certain
initial parameters. By multiple waves we mean, for example, a forward wave composed
of a rarefaction and a compression. The differential equations derived below are discussed
relative to Fig. 1, but are valid for any wave structure.

The plate motion for an overmatch is considered first. The constant states 2 and 3,
shown in Fig. 1, are determined from the condition that the pressure and particle velocity
match across the interface (see Fig. 4). The resulting equation,

PhD(u2 = u3 ; s, —) — m32Ai — u3(u3 + Ci2)1/2Ai = 0, (4.1)

is solved for the common particle velocity u3 , where p2 = VhD(u2 = u3 ; s, —) and p3 is
obtained from Eq. (2.9). The superscript D refers to the driver, so that p„D is the
Hugoniot pressure in the driver. States 2 and 3 can now be completely determined. In



A COMPRESSIBLE PLATE DRIVEN BY SHOCK OR DETONATION 33

X0 X,

POSITION
Fig. 2. Sketch of plate motion with separation in the undermatch case.
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Fig. 3. Shock impedance ratio (plate/driver), f, vs. driver pressure, </>, for separation with an inert
driver. The curves are solutions of Eqs. (A10), (A13) with S = 0, and (A14) with a = b. Points below

a constant-y curve correspond to separation.
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particular, for state 3, p3 , v3 , W, c3 and Z3 are determined by Eqs. (2.9)-(2.11), (2.8),
and (2.7).

The motion of the plate is isentropic after the initial shock provided none of the
compression waves steepens into a shock. Shock formation is checked by calculating
the characteristic envelope for each compression wave as described in Appendix B.
The motion of the driver is isentropic after the reflected shock until the lead characteristic
of the first backward-facing rarefaction overtakes the shock. The forward characteristic
emanating from the overtake point provides an upper bound in the (x, t) plane for the
driver and plate solutions, provided there is no shock formation. In practical problems
this time is long compared to the shock transit-time for the plate, since the reflected
shock is generally weak (see Fig. 1). Also, shock formation is uncommon in practical
problems, as discussed in Appendix B.

The regions numbered in Fig. 1 are constant states as a result of the step shock or
detonation in the driver. The states adjacent to the free surface have p3n+1 = 0 and

U3n+1 = u3n + c3n — c3„+1 , n > 1 (4.2)

from Eq. (2.5). Eqs. (2.7) and (2.8) determine w3„+I (= i\) and c3„+i (= c4). The states
adjacent to the interface are determined from the pressure and particle velocity match
across the interface. The pressure in the driver p3„_ 1 = pcD(u3n-i ; 2, —), on the forward
characteristic through state 2 is equated to the pressure in the plate on the backward
characteristic through state 3n — 2 given by Eq. (2.6). The resulting equation,

PcD(u3„-i = w3„ ; 2, -) - b[ 1 + (u3n - w3„-2)/c3„-2]3 + b = 0, (4.3)

is solved for the common particle velocity u3n where n > 2. States 3n (plate) and 3n — 1
(driver) are determined from the particle velocity. In particular, for state 3n, p3n , v3n ,
and c3n are determined by Eqs. (2.6)-(2.8).

In the pressure-particle velocity plane as shown in Fig. 4, the constant states map
to points. The rarefaction and compression waves adjacent to the constant states are
simple waves and map to forward and backward characteristics respectively (C± for the
plate and C+D for the driver). The forward Hugoniot curve for the plate (H,) through
state 1 and the backward Hugoniot curve for the driver (II J1) through state s are also
shown.

The motions of the interface and the free surface are described by linear, first-order,
ordinary differential equations for each rarefaction or compression wave interaction.
The interaction beginning at time t3 in Fig. 1 is considered the first (n = 1) interaction
at the interface. Position, time, velocity, and pressure on the interface are denoted by
X3n , I\n , U3n , and P3n for the nth interaction and are continuous across the interface.
Sound speed and specific volume are discontinuous and denoted by C3n_i , V3„_i for the
driver and C3n , V3n for the plate. Similarly, the interaction beginning at time tt is con-
sidered the first (n = 1) interaction at the free surface. The solution on the free surface
for the nth interaction is denoted by Z3n+1 , T3n+1 , U3n+1 , P3n+1 (— 0), C3n+1 (— Ci),
and V3n+1 (= c42/36). The independent variable for all interactions is the slope (77) of the
backward characteristics composing the rarefaction wave centered at xx , <1 ;

V = (X3 — xO/(T3 - <0 = U3(v) - C73(h), (4.4)

with range u3 — c3 = r)3 < 77 < = w4 — c4 .
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Fig. 4. Pressure-particle velocity plane in the overmatch case. The figure corresponds to solution of
numerical example 1 in Sec. 6, i.e. a 1.0-cm-thick aluminum plate driven by the high explosive

Composition B.

Time on the interface, T3„(?)), during the nth interaction is determined by the dif-
ferential equation

Tin — [cirT32' 2s'(T3„ T 3n~2)j/C3n , (4-5)

where prime denotes differentiation with respect to v- Eq. (4.5) is derived by differen-
tiating Eq. (2.5), (X3n - Z3„-2)/(T3n — T3n_2) = U3n — C3„ , and eliminating XJ
through the particle velocity definition, Xm' = UJTJ, where m = 3n and 3n — 2.
The quantity 2s (= C3n — U3n) is the Riemann invariant for the backward characteristic.
For the first interaction (n = 1), X0 = x0 , T0 = t0 , X^ = xx , = ti , 2s = — rj and
2s' = —1. The sound speed, C3n , is given by

C3„ = U3n + 2s, (4.6)

where U3n is determined from the pressure match at the interface

PcD(U3n ; 2, -) - (27Z3)~1/2[U3n + 2s(„)]3 + 6 = 0, (4.7)

using Eqs. (2.6), (2.7), and (2.8). The initial condition for Eq. (4.5) is
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T'JniVll) — ^3n —2 ~f" {%3n-2 X3„-3(r?4) "t" U3n[T 3n-3 (t)4) £311-2] } /c3n • (4.8)

The position, pressure, and specific volume are obtained from Eqs. (2.5), (2.6), and (2.7).
Time on the free surface, T3n+t(ri), during the nth interaction is determined from the

differential equation

T3n+ / = [C3nTJ - 2r'(T3n+1 - Ttn)]/ct , (4.9)

which is derived similarly to Eq. (4.5). The quantity 2r(= U3n + C3n) is the Riemann
invariant for the forward characteristic. The derivative 2r' is given by 2r' = 2 (£/,„' + s')
using Eq. (4.6) where U3n' is obtained by differentiation of Eq. (4.7). The initial condition
for Eq. (4.9) is

I'in+li.Vi) = ^3n {X3n^2(Vi) U3n+1 \t3n T3n-2 (Vi) ] } A-4 • (4.10)

The velocity is given by U3n+1 = U3n + C3n — c4 and the position by Eq. (2.5) with
reference state X3n , T3n .

Eqs. (4.8) and (4.10) yield initial conditions for the first (n = 1) interactions from the
constant-state solutions. Initial conditions for the nth interactions can be determined
after solution for the (n — l)s£ interactions.

An interesting special case arises when the driver and plate are described by the same
equation of state, Eq. (2.4), but v0 ^ Vi , where v0 is the initial specific volume of the
driver. In this case Eqs. (4.5) and (4.9) can be integrated in closed form for n = 1.
The solution of Eq. (4.5) is

T3(v) =h+ (<3 - «l)[C3/C3(7?)]("+1), (4.11)

where fi = (Z2/Z3)1/6 and C3(rj) = (u2 + c2 — i)/(m + 1). In Eq. (4.9) the quantity
2r' is a constant, (m — 1 )/(jx + 1). The solution of Eq. (4.9) is

TM =u + (u - - 2n(t3 - <1)03("+1,e9[r(-M, ot) - r(-M, e)]/(n - 1), (4.12)

where 6(i;) = (p — l)C3(ij)/ct , d3 = 0(173), and r is the incomplete gamma function.
The solutions in the interior of the driver and plate are related algebraically to the

solutions on the interface and the free surface. The flow in the interior of the driver,
following constant state 2, consists of constant states and backward-facing simple
rarefactions. At any point x, t in the nth rarefaction, we can determine u and c from the
interface solution. Since the rarefaction waves are simple waves, the backward charac-
teristics are straight lines and

u(x, t) = U3n(ai), (4.13)

c(x, t) = C3n(a,), (4.14)

where aY is the root of H3n-i{di ; x, t, —) = 0 and

Hm(r, x,t,±)rnx- Xm(v) - [UM ± CM)][t - Tm{ „)]. (4.15)

Note that Z3„_! = X3„ , T3„_, = T3n , and f/3„-i = U3n , since these quantities are
continuous across the interface. The pressure is given by p(x, t) = j)r"[u(x, t); 2, —]
and the specific volume is determined from the p(v) isentrope through state 2.

The flow in the interior of the plate, following constant state 3, consists of constant
states, simple rarefactions and compressions, and interactions. At any point x, t in the
nth rarefaction or compression, two equations for u and c can be obtained from Eq. (2.5):
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u(x, t) = RUM =F C3„(ffli) + u3n+1 ± c3„+i], (4.16)

c{x, t) = c3n+1 ± w3n+1 =F w(», t), (4.17)

where at is the root of H3n(a,i; £, t, =F) = 0. The pressure is given by Eq. (2.6) as p(x, t) =
pc[u(x, t); at , ±], where reference state a! means U3n{aY), C3n(a1), and P3„(ai). The
specific volume is given by Eq. (2.7). The upper sign is used for the rarefactions and the
lower sign for the compressions.

Similarly, for any point x, t in the nth interaction region at the interface and at
the free surface,

u(x, t) = %[U3n(ai) + Cinifli) + Um(a2) - Cm(a2)], (4.18)

c(x, t) = C3n(ax) + [/3»(ai) - u(x, t). (4.19)

In Eq. (4.18), is the root of H3n(a1 ; x, t, +) = 0, a2 is the root of Hm(a2 ; x, t, —) = 0,
and m = 3n and 3n + 1 for interaction regions adjacent to the interface and the free
surface respectively. The pressure and specific volume are calculated as for the simple
waves.

We now consider the plate motion for an undermatch. In this case states s and 2 are
joined by a backward-facing, centered, simple rarefaction. Consequently, state 2 lies
on the forward characteristic through state s. The particle velocity, u2 = u3 , is deter-
mined from the relation

Pc°(u2 = u3 ; s, —) — u32/vi — u3(u32 + Ci)/vx = 0, (4.20)

in place of Eq. (4.1).
The remaining constant states and the motions of the interface and the free surface

are determined by the equations for the overmatch case. The solution can be determined
for all time in the absence of shock formation in the plate. In the interior of the centered
rarefaction reflected into the driver, the solution is determined by the relation u{x,t) —
c(x, t) = (x — x0)/(t — t0) and the constancy of the Riemann invariant on the forward
characteristic through state 2.

5. Motion with separation. The plate may separate from the driver for certain
values of the initial parameters. This generally occurs during the first interface interaction
but may occur during a later interaction. Fig. 3 shows regions in the f, <f> plane where
separation takes place. Fig. 2 shows a sketch of the motion in the x, t plane. The double
wave structure (e.g. a forward wave composed of a rarefaction and a compression) in
the plate is the simplest structure for this type of motion. As in Sec. 4, the differential
equations derived below are valid for any wave structure.

In the following we restrict our attention to the case where separation occurs during
the first interaction, at time T3(r)c), where ij3 < tjc < . The pressure at the separation
point is P3(Vc) = 0, the velocity is U3(t]c) = u5 , and the rate of separation is Au =
u4 — u5 = ??4 — t)c . A sketch of the pressure-particle velocity plane is shown in Fig. 5.
The motion induces tension (negative pressure) in the plate, the maximum tension
being p = b[ 1 — (w4 — umin)/2c4]3 — b, where «mi„ is the minimum velocity of the free
surface.

Eqs. (4.5) and (4.9) determine T3 and T4 for 17 < r)c . These equations simplify
for ij > ijc to
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Fig. 5. Sketch of the pressure-particle velocity plane for motion with separation in the undermatch
case. The figure corresponds to numerical example 2 in Sec. 6, i.e. a 1.0-cm-thick rhodium plate driven

by tantalum.

TJ = r3n-2' + (T3n - T3„_2)/c4 , (5.1)

T3„+1 = T3„' (,T3n+1 — T3n)/c4 , (5.2)

since the interface becomes a zero-pressure boundary. Eqs. (5.1) and (5.2) also hold
when r\ < t\c and n > 2, since separation occurs during the first interaction. These
equations can be integrated in closed form for the initial conditions given by Eqs. (4.8)
and (4.10). The solutions for time on the back surface are

n = 1: T3(t) < Vc) • ■ • from Eq. (4.5),

Ta(v > Vc) = + A Tie*, (5.3)

n > 2: T3n(ri < tjc) = T4(t? < i]c) + (n — 1) Ane" + (n — 2) Ar2e~",

Taniv > Vc) = ti + n A Tie* + (n — 1) Ar2e~*.

Similarly, the solutions for time on the free surface are

n = 1: Ti(t) < Vc) ■ ■ ■ from Eq. (4.9),

T4(v > Vc) = <1 + Arrf* + Ar2e~\ (5.4)

n > 2: T3n+1{r] < tjc) = < tjc) + (n — l)(Arie" + Ar2e~"),

T3n+i(v > Vc) = ti + n(ATle'1' + Ar2e-,t),

where Art = [T3(j?c) — h] exp (Am/c4), At2 = [T4(?jc) — T3(?jc)] exp (— Au/c„), i =
(*; — »74)/c4 , co = [[/,(„) — m4]/c4 , and U^ri) is a result of solution for Tt. The additional
flow variables and the interior solutions are determined as described in Sec. 4.
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Shock formation in both the forward and backward compression waves is checked as
described in Appendix B. Shock formation is more common here than for motion without
separation. In fact, a class of motions is described in Appendix B for which shock forma-
tion will always occur.

6. Numerical examples. Two numerical examples are given to illustrate motion
without and with separation. In each example the driver is described by the general
Murnaghan equation of state

e(p, v) = [(p + 7a)v - -yav0]/(-y - 1), (6.1)

where e(0, v0) = 0 and a is a constant related to the initial sound speed. The charac-
teristic and Hugoniot equations for the driver indicated in Eqs. (4.1), (4.3), and (4.7) are

pcD(u; k, =F) = (pt + o)[ 1 =F (7 - 1)(« - «»)/2cJ2T/(T-1) - a, (6.2)

p„D(u; k, ±) = pk + (7 + l)(w - uk)2/\vk ± (u — uk){[{y + l)(w - uk)/2\2

+ 4»*7(p» + a)}U2/2vk. (6.3)

For the first example we consider a 1.0-cm-thick aluminum plate driven by the
high explosive Composition B. The initial sound speed and density of the aluminum are
0.5328 cm/jusec and 2.785 g/cm3. The constant b in Eq. (2.4) is determined from these
values and Eq. (2.8). Eqs. (2.6) and (2.9) with this value of b reproduce experimental
isentrope and Hugoniot data [9, 10] to within about 4% over the pressure range of
interest. The detonation products are described by Eqs. (6.1)-(6.3) with 7 = 2.769
and a = 0 after Deal [11]. The detonation velocity is 0.7991 cm//isec and the initial
density is 1.714 g/cm'5.

The solutions in the x, t and p, u planes are shown in Figs. 1 and 4. There is no shock
formation from the compression waves in the plate. Hence, the solution is valid below
the forward characteristic emanating from the point (x = —16.30, t = 46.40), where the
lead characteristic of the first backward-facing rarefaction in the driver overtakes the
reflected shock. The initial slope of the forward characteristic is u2 + c2 = 0.7948.
The history of the free-surface velocity is shown in Fig. 6. Curve B is a magnification
of the early portion of curve A. The free-surface accelerations are nearly constant in
this example. The dashed line is the steady solution, w„ = u2 + 1.131 c2 , assuming
the backward rarefactions in the driver are simple waves for all time.

A fourth-order Runge-Kutta method was used to integrate the system of differential
equations, Eqs. (4.5) and (4.9). Initial conditions for the n = 1 equations were calculated
from the constant-state solutions using Eqs. (4.8) and (4.10). The n = 1 equations
were then integrated to obtain the solutions for the first interactions and the results
were used to calculate initial conditions for the n = 2 equations. The n — 1 equations
were integrated again together with the n = 2 equations to obtain solutions for the
second interactions and the results were used to calculate initial conditions for the
n = 3 equations. This procedure was continued for the desired number of interactions.
The reintegration of the differential equations was performed because the interval
determining Runge-Kutta routine required solution values for the earlier interactions
off the previous -q mesh.

The second example illustrates motion with separation. We consider a 1.0-cm-thick
rhodium plate driven by tantalum. The plate is described by pi = 11.708 g/cm3 and
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Fig. 6. Free-surface velocity history for numerical example 1 in Sec. 6, i.e. a 1.0-cm-thick aluminum
plate driven by the high explosive Composition B.

Ci = 0.4987 cm//usec. The driver has p0 = 16.654 g/cm3, c0 = 0.3414 cm/jusec, and
7 = 2. The constant a in Eq. (6.1) is determined from a = c02p0/7- These parameters
describe experimental Hugoniot data [10] to within about 5% for tantalum and 10% for
rhodium. The initial shock velocity in the tantalum is 1.901 cm//isec, and the interface
and free surface are at x0 = 2.0 cm and Xi = 3.0 cm.

Separation occurs during the first interaction at r?„ = 2.138 cm/^sec. The maximum
tension in the plate is about 0.1756 Mbar and the rate of separation is Au = 0.0465
cm/Vsec. The solutions for the first interactions at the interface and free surface are
given in Table 1. Solutions for the later interactions can be obtained from Table 1 and
Eqs. (5.3) and (5.4). Sketches of the pressure-particle velocity plane and the free-surface
velocity history are shown in Figs. 5 and 7.

Appendix A. The condition for separation of the plate from the driver during the
first interface interaction is w4(p = 0, Z3) > u5(p = 0, Z2). For driver materials described

TABLE 1.
Solutions for the first interface and free-surface interactions for motion with separation in cm-g-fisec system

V Xz T3 Uz C, P3 V3 X, T,
-1.0218 2.7662 1.6676 1.2450 2.2667 37.695 0.0443 7.4508 3.0016
-0.6655 2.8206 1.7085 1.4102 2.0757 28.721 0.0484 7.9835 3.1895
-0.3093 2.9002 1.7616 1.5774 1.8867 21.327 0.0532 8.5718 3.3988

0.0469 3.0185 1.8326 1.7469 1.7000 15.339 0.0591 9.2308 3.6349
0.4032 3.1982 1.9304 1.9188 1.5156 10.587 0.0662 9.9845 3.9064
0.7594 3.4795 2.0703 2.9034 1.3340 6.9098 0.0753 10.872 4.2273
1.1156 3.9384 2.2800 2.2710 1.1553 4.1489 0.0869 11.962 4.6219
1.4719 4.7299 2.6142 2.4520 0.9801 2.1550 0.1024 13.379 5.1342
2.1378 8.7153 4.1123 2.8015 0.6637 0. 0.1513 17.971 6.7832
2.1843 9.2638 4.3065 2.8480 0.6637 0. 0.1513 18.008 6.7965



A COMPRESSIBLE PLATE DRIVEN BY SHOCK OR DETONATION 41

w '4 17 '3n + l
£ TIME

Fig. 7. Sketch of the free-surface velocity history for numerical example 2 in Sec. 6, i.e. a 1.0-cm-thick
rhodium plate driven by tantalum.

by Eq. (6.1), this condition can be written as

c3(p3 , v3) - c4(0, Vt) - [2/(7 - l)][c2(P3 , v2) - c5(0, tis)] > 0, (Al)

since states 2 and 3 are joined to states 5 and 4 by simple waves. Eq. (Al) is rewritten
to yield a relation between the initial parameters v = v0/vi and 0 = pa/b.

The quantity c3 — c4 is

c3 - c4 = (bv0)1/2[3(03 + 1)(03 + 3)A(20, + 3)]1/2[1 - + I)"173], (A2)

by use of Eqs. (2.6), (2.7) and (2.9), where 03 = p3/b. Similarly, c2 — c5 is

c2 - c5 = (bvoy/2[y(4>3 + a)v2/v0]1/2\l - [«/(03 + «)](T-1,/2T}, (A3)

where a = a/b and the relations

p(v, a) = Zv"1 — a, (A4)

c(p, f) = [7(p + a)v]l/2, (A5)

n Ci, lrl V>&Vk + (y - l)(yt - 8))] + 2yd(vk — v)
P"{V>k) - 2v — (y — l)(vk - v)  ' (A6)

derived for Eq. (6.1) have been used.
The ratio v2/v0 in Eq. (A3) is

v2/v0 = (vjv 0)[(7 — 1)03 + (7 + 1)0 + 27a]/[ (7 — 1)0 + (7 + 1)03 + 27a], (A7)

for an overmatch and

v2/v0 = (vs/v0)[(<t> + a)/(03 + a)]1/T, (A8)

for an undermatch. In Eqs. (A7) and (A8),

v,/v0 = r/(r + l), (A9)

where T = (7 — l)/2 + 7a/0 for an inert driver and T = 7(1 + a/0) for a high explosive
driver under Chapman-Jouguet conditions.

Eq. (Al) is now a function of v, 0, and 03. We obtain the desired result in parametric
form by expressing v = v0A'i as a function of 0 and parameter 03 . Solution of Eq. (2.9)
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for v yields

v = 032/X2(203 + 3), (A10)

where X = (bv0)~W2u3 and the reference state is 1. For an overmatch, 03) is given
by solution of Eq. (6.3),

X = — {<t>3 — <i>)TW2[y(<t> + a) + (03 — + i)/2] 1/2}(r + 1) 1/2, (All)

using Eq. (A9). For an undermatch, X(</>, <f>3) is given by solution of Eq. (6.2),

X = [<t>1/2 + [2/(y - 1)][7(* + a)r]1/2{ 1 - [(*, + «)/(* + a)]<T"1,/2T}](r + l)"1'2, (A12)

using Eqs. (A4), (A9), and the mechanical shock conditions.
Eq. (Al) can be rewritten using the above results to yield

= (x/*3)[3fo, + l)(fc + 3)]1/2[1 - (03 + 1)"1/3]

- [2/(7 - 1)M*. + a)v,/v0]1/2{1 - [«/(*, + «)](T-1,/21'} > 0, (A13)

with v(<t>] tf>3) given by Eq. (A10). The rate of separation is S = (bv0)~1/2(ut — w5). The
impedance ratio plotted in Fig. 3 is

f = Wpi/WDp0 = [v(203 + 3)/*(r + 1)]1/2. (A14)

Appendix B. Shock formation in the plate is discussed in this appendix. The point
of shock formation is the earliest time on the envelope formed by the straight charac-
teristics composing a forward or backward compression wave. The characteristics are
described by

Hm{x, f,n,±)**x- Xm(v) ~ [Um(v) ± Cm(v)][t - Tm(v)} = 0, (Bl)

where i? is the family parameter and m = 3n and 3n + 1 for forward and backward
waves. Necessary conditions for the existence of an envelope are Hm = 0 and dHm/dri = 0
which yield

t(v) = Tm ± CmTJ/(UJ ± CJ), (B2)
x(v) = I. ± CmTm'(Um ± Cm)/(Um' ± CJ). (B3)

Eqs. (B2) and (B3) are sufficient to define the envelope, if (dHm/dx)2 + (dHm/dt)2 0
and (dx/drj)2 + (dt/dij)2 ^ 0. The first of these conditions is satisfied since dHm/dx = 1.
The second condition must in general be checked.

Comments on shock jormation jor motion without separation. Shock formation in
practical problems is uncommon, except for large input shock strengths. Fig. 8 shows
the locus of shock formation points at the free surface of the plate in the first compression
wave. The case illustrated uses Eq. (2.4) for the equation of state of the driver and plate,
with v0 7* Vi . Points lying above the curve correspond to shock formation. For this
particular case both envelope sufficiency conditions are satisfied, shock formation occurs
on the lead characteristic, and there is no shock formation for an undermatch.

Comments on shock jormation for motion with separation. Shock formation in the
forward compression wave initiated at the separation point T3(t]c) is a common feature
for this type of motion. In fact, a shock will always form in the plate if the free-surface
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Fig. 8. Shock impedance ratio (plate/driver), f, vs. driver pressure, <j>, for shock formation at the free
surface. The driver and plate have identical equations of state, given by Eq. (2.4), but different initial

densities.

velocity is greater than or equal to u5 for all t > h . This is easily shown as follows.
Eqs. (B2) and (B3) become t = 2T3 — h and x = X3 + 2r(T3 — <0 for v > yc ■ Both
envelope sufficiency conditions are satisfied and the minimum time on the envelope is
t(r)c). This time is also the time at which a straight line through xl , h with slope uB
intersects the lead characteristic of the compression wave. Thus, the envelope point
x(vc), t(rje) lies inside the plate when the free-surface velocity is greater than or equal
to w5 for all t > 11 .
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