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MOTION OF AN EXPLOSIVE-INDUCED PLANE SHOCK WAVE*

BY
W. FICKETT
Los Alamos Scientific Laboratory

Abstract. A plane, unsupported, Chapman-Jouguet detonation in a condensed
explosive drives a decelerating shock into a semi-infinite inert of lower shock impedance.
A previously reported exact solution for a portion of this one-dimensional time-dependent
problem is extended to the entire flow field, and some numerical results are given. The
solution has the form of a small set of first-order ordinary differential equations for the
shock, and a similar set for each particle path.

1. Introduction. This one-dimensional time-dependent problem of the decelerating
shock in a semi-infinite inert material driven by a finite length of explosive is fundamental
in explosives work. The physical approximations are as follows. The chemical reaction
is assumed to be instantaneous, so that we have to deal only with the reaction products,
which we refer to as ‘“the explosive”’. Both the explosive and the inert are treated as
inviscid fluids, so that the Euler equations of compressible flow apply.

Approximate solutions of this problem have been given [1, 2]. By proper choice of
special but quite realistic equations of state for the two materials, the partial differential
equations describing the motion may be reduced with no approximation to a set of
ordinary differential equations with one independent variable. Solutions of this type
for the motion of the interface and shock have been given by Kondratev et al. [3]. We
here extend the exact solution to the entire flow field. Having in mind as an important
application the testing of computer programs which solve the partial differential equations
of motion by finite-difference methods, we give all the final equations in a form having
time as the convenient independent variable, and furnish a table of numerical results.
We also describe, for the relatively complicated inert equation of state, a tested com-
putational procedure suitable for use in a finite-difference computer program.

For background, and for standard results used here without explicit reference, the
reader is referred to [1-4].

The problem is described in Sec. 2, the equations of state in Sec. 3 and in the Appendix,
the solution in Sec. 4, and numerical results in Sec. 5.

2. The problem. The body (Fig. 1) consists of a finite length of condensed explosive
driving a semi-infinite inert. The flow is assumed to be one-dimensional, that is, all
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Fig. 1. The z — t diagram of the motion, The explosive is Composition B and the inert is plexiglas.

dependent variables are functions only of « and ¢. The initial condition at ¢ = 0 is that
both materials have their uniform normal density at p = 0. The left boundary condition
is p = 0. The detonation is initiated at the left boundary at time ¢ = 0. Under our
assumptions the detonation front consists of a shock in which the chemical reaction is
completed instantaneously. This is followed by a right-facing rarefaction wave, the
so-called Taylor wave (region 1 of the figure). When the detonation front reaches the
interface, a centered left-facing rarefaction (region 2) is reflected back into the explosive,
and a shock is transmitted into the inert. The Taylor wave passes through the left-facing
centered rarefaction into region 3, where it interacts with its own partial reflection from
the interface. The transmitted shock is followed by the transmitted Taylor rarefaction
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region 4) which continually reduces its strength. The expansion of the reaction products
to the left of x = 0 is not shown in the figure. Fig. 2 is the p — u diagram and Fig. 3
a sketch of the pressure profile at time ¢ = 2us.

We use the following symbols: a, b—material constants for the inert; c—sound speed;
D—Chapman-Jouguet detonation velocity; e—specific internal energy; h—Lagrangian
coordinate, Eq. (4), k—¢,/p.""?, Eq. (8b); P—pressure; t—time; u—particle velocity;
U—shock velocity; v—specific volume; v = 1/p; z—distance; x,,—initial position of
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Fig. 2. The p — u diagram. The characteristics in the explosive are straight lines by virtue of the
function of pressure chosen for the ordinate which in the explosive is the sound speed (see Sec. 3).
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Fie. 3. The approximate pressure profile at ¢ = 2us.

interface; z—acoustic impedance; z = pc; y—material constant for the explosive; p—
density.

Sub- and superscripts are: 0—initial; 1—Chapman-Jouguet state of the explosive;
*—gtate after initial wave interaction at interface; i—interface.

Literal subscripts denote partial differentiation. The units are cm-g-us, with pressure
in Mb and velocity in em/us.

The equations of motion are the inviscid (Euler) equations:

pe + up. + pu. = 0, (1a)
u, + uu, + vp, = 0, (1b)
e. + ue. — p(v, + wv,) = 0, (Ie)
together with the Rankine-Hugoniot relations across shocks:
UL = palls (2a)
(ou’ + p)y = (o’ + P)2, (2b)
e+ pv + 30’ = (e + pv + 3u°):. (2c)

The subscripts 1 and 2 here refer, for these equations only, to the front and rear states
of the shock.
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The equations of state are given in the form
e = e(p, v). (&)

We will find it convenient to define a Lagrangian coordinate h in the inert:

hz) = ‘/; ’ p(z) dz; t = constant. 4)
The characteristic relations are:
(dx/dt), = u + ¢, (5a)
(dh/dt), = =z, (5b)
(dp/du). = Fz, (5¢)
where the plus and minus signs refer to the two families of characteristics, as shown in

Figs. 1 and 2.

The detonation is treated under the usual simplifying assumptions. The reaction
takes place instantaneously at the front. The detonation velocity (i.e., the velocity of the
front) is constant at the Chapman-Jouguet value, following instantaneous initiation
to this value at the left boundary. The Chapman-Jouguet detonation velocity is that
velocity for which the flow immediately behind the front is sonie, i.e., for which
u + ¢ = D. We call the state at this point the Chapman-Jouguet state of the explosive
and denote it by subscript 1. From this front motion, it follows that the flow behind it
is a simple rarefaction wave centered at x = ¢ = 0.

3. Equations of state. For the explosive, we choose the polytropic gas equation
of state
e=pv/ly — 1) ()

with the value 3 for the constant y. This makes all characteristics in x — ¢ space straight
lines.

For the inert, we choose what we call, after its originator [5], the Walsh equation of
state, described in the Appendix. Its key property is that for a shock followed by a
rarefaction, as in the present problem, the Hugoniot locus and the rarefaction locus
coincide in p — u space, so that the acoustic impedance z is a function only of the pres-
sure, and the forward characteristics are straight lines in h — ¢ space. These properties
make the “weak shock approximation’ [4, sec. 74] exact and allow the deceleration of
the shock to be calculated exactly, given the motion of the interface. They impart to the
flow field in the inert enough of the properties of a simple wave to allow the exact deter-
mination of the interface motion provided the above equation of state (Eq. (6)) is
used for the explosive.

4. Solution. We first collect the known flow properties in the two materials. In the
explosive, the Chapman-Jouguet state is

P1 = po D2/4’ (73')
v = 300/4, (7b)
w = D/4, (7¢)

¢ = 3D/4. (7d)
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The entire flow in the explosive is isentropic, so that we have throughout it

o = pw’/p, (8a)
c=kp”% k=c/p'" (8b)
The plus and minus characteristics, straight lines throughout, are given by
(dz/dt), = z/t = u + ¢ = u + kp'’® = constant, (9a)
(dz/dt)- = w — ¢ = u — kp'’* = constant. (9b)

The constancy of u + ¢ along plus characteristics and of © — ¢ along minus characteristics
is a consequence of the choice of the value of 3 for v, the result for general v being

u %+ 2¢/(y — 1) = constant, ¢ o pYTUA (9c)

In the inert, the entire flow lies, in p — u space, on the Hugoniot (through the initial
state) shown in Fig. 2, so that p and functions of p may be expressed in terms of u:

p = pou(a + bu), (10a)
z = pc = dp/du = po(a + 2bu). (10b)
At the shock, the shock velocity and particle velocity are related by
U =a+ by, (10¢)
and the density is given by the mass conservation relation across the shock:
p = pU/(U — u). (10d)
The plus characteristics in h = ¢ space are straight lines throughout, given by
(h — b)) = 2(t — t.), 1)

where (h, , t;) is the point of intersection of the characteristic with the interface. Along
each such characteristic p, u, and z are constant.

The nice, i.e. isentropic, properties of the flow in the explosive, which we need for
the exact solution, are spoiled by the presence of shocks. Thus we limit consideration
at the outset to the undermatched case, in which the wave 2 reflected into the explosive
from point A of Fig. 1 is a rarefaction and not a shock. There remains another possibility
of shock formation. To see this consider first the case shown in Figs. 1 and 2. Region 3
is the interaction region produced when the Taylor wave, after passing through wave 2,
produces a weak extended reflected wave as it passes through the interface. If, as in
Fig. 2, the inert Hugoniot AD - - - lies entirely below the tail characteristic AC - - - of
wave 2, then the extended reflected wave, represented by the narrow triangular region 3
in Fig. 2, is a rarefaction (along arcs like CD the pressure drops with time) and no shock
will form. If, on the other hand, by changing the properties of the inert, its Hugoniot
were made to lie above the tail characteristic of wave 2, then the extended reflected
wave would be a compression, and a shock would eventually form somewhere in it,
probably on the tail of wave 2. This would introduce small errors into our solution at
very late times. The case shown is believed to be typical, but this point should be checked
in any application.

We now proceed to obtain the prescription for the calculation of the entire flow.
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We first find the motions of the interface and shock, which must be obtained before
the rest of the flow can be calculated.

4.1 Initial interaction. The starting point for both is the state produced by the
initial interaction when the detonation front reaches the interface. The requirement
that p and u be continuous across the interface gives as the solution point A of Fig. 2,
the intersection in p — u space of the rarefaction locus (of negative slope through the
Chapman-Jouguet point) for the explosive, and the shock Hugoniot through the initial
state for the inert. The explosive rarefaction locus is given by Eq. (9a) with

u+c=u1+cl=D, (12)

the second equality being the Chapman-Jouguet condition. The Hugoniot of the inert
is given by Eq. (10a); elimination of p from these two relations results in the desired
equation for the initial particle velocity u* at the interface. It is the solution of

D — u — k[psu(a + bu)]'® = 0. (13)

The pressure is given by Eq. (10a), the density in the explosive by Eq. (8a), and the
density in the inert by Eqgs. (10c) and (10d).

4.2 Interface. We obtain the interface motion in the form of a differential equation
for u. Our starting point is the equation for the forward characteristics in the explosive,
Eq. (9a), applied at the interface. We also use the relations between p and  and z and »
in the inert, Eqgs. (10). The special property that these hold throughout the inert and in
particular at the interface is essential. There is also, of course, the continuity of p and u
across the interface. Other quantities such as p and ¢ are not continuous across the inter-
face; where these enter, we must specify to which material they refer.

We first differentiate Eq. (9a) with respect to time along the interface to obtain

dz/dt = u + ¢ + (du/dt + de/db)t, (14)

in which ¢ is the sound speed in the explosive given by Eq. (8b). Since the interface is
a particle path, we also have on it

dz/dt = u. (15)
We next express de/df in (14) in terms of du/dt. We can do this because c is a function

of p alone and because p at the interface is a function of u alone by virtue of the inert
relation (10a) applied at the interface. The result is

dc/dt = (dc/dp)(dp/du)du/dt (16)
= 3kp~** du/dt, a7

in which the substitution of z for dp/du follows from (10b), applied, like (10a), at the
interface, so that z is the value of pc in the inert. Substituting (17) and (15) into (14)
and solving for du/dt gives the desired result

du/dt = F(u, t) = —[t(1/kp"") + 2/p)]7, (18)
in which p and z are functions of 4 by Eqs. (10). The position z is given by Eq. (9a) as
z = (u+ kpu (19)

The initial conditions are: the value of u from the interface match, given by Eq. (13),
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and the time at which the detonation reaches the interface,
t = t* = x.'o/D. (20)

In the explosive, the density is given by Eq. (8a), and the sound speed by Eq. (8b).
In the inert the density is given by the isentrope relation given in the Appendix (Eq.
(A2a)) with p and 9 the values from the interface match; and the sound speed is given
by ¢ = z/p.

Eq. (18) can be integrated to

In (t*/t) = [k™'po *a'*b™**B,(4/3, 4/3) + 3 Inu + 1 In (po(a + bu))]|* (21)
where B,(4/3, 4/3) is the incomplete beta function

B.(4/3, 4/3) = f CE = o) dg

4.3 Shock. We obtain the shock motion in the form of a differential equation for u,
with time ¢ on the shock path as independent variable. The key property is that along
a plus characteristic in the inert, such as DE of Figs. 1 and 2, p and » (and therefore z)
are constant, so that the values of p and u at E are just those at D. The equation of
such a characteristic in b — ¢ space is Eq. (11), in which (h; , ¢;) is its intersection with
the interface. To identify the p, u states on the shock with their counterparts on the
interface, we must determine ¢; as a function of £. We first write an equation for du/d¢
in terms of d¢;/dt. In the present context, the interface Eq. (18) becomes

dU/dt, = F(u, t.’), (223)
or

du/dt = F(u, t.) dt;/dt, (22b)

which is the desired equation for %, provided we can express dt;/dt in terms of u, ¢, and ¢, .
To do this, we differentiate Eq. (11) with respect to ¢ to obtain

dh/dt = (dz/dt.)(dt;/d)(t — t.) + 2(1 — dt./db). (23)
Now from the definition of h, Eq. (4), and from Eq. (10c) for U we have
dh/dt = poU = po(a + bu), (24a)
and from Eqgs. (10b) and (22a),
dz/dt; = 2pbF (u, t,). (24b)

Making these substitutions in Eq. (23) and solving for df,/dt gives the desired result:
dt,/dt = pobu/G(u, t, t,‘),
G(u, t, t;) = 2 — 2pbF(u, t;)(t — t.). (25)

This is to be integrated simultaneously with Eq. (22b). The initial conditions are the
same as those for the interface. The shock position z is given by Eq. (11), which with the
definition of & becomes

T =T+ 2@t — t:)/po - (26)
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The shock velocity is given by Eq. (10¢), the density by Eq. (10d), and the sound speed
by Eq. (10b).

4.4 Particle paths in the inert. The derivation of these equations closely parallels
that of those for the shock and will not be given here. The results are

dt;/dt = 2/G(u, t, t.), (27a)
du/dt = ZF(u’ t.)/G(’U,, t; ts’)) (27b)
dz/dt = u. (27¢)

The initial conditions for the integration are those at the point where the particle enters
the shock. The density may be obtained from the isentrope relations, Eq. (A2a).

4.6 Particle paths in the explosive. The particle path must be broken into three
parts, corresponding to its traversal of regions 1, 2, and 3 of Fig. 1. The boundaries of
region 2 are the head and tail characteristics of the centered rarefaction reflected from
the match point:

z/t =u — ¢, z/t = u* — c*.

Region 1. Here we have, from Eqs. (8) and (9),

u—+c=z/t (28a)
U—Cc=uU —¢ (28b)
or, eliminating ¢,
u =% —c)+ i/t (29)
The particle path equation is then
dz/dt = v = $(u, — ¢1) + 3z/t. (30)

The initial state for the integration is the position z, and time ¢, at which the particle
enters the detonation front with

to = xo/D. (31)
Eq. (30) may be integrated to
[2/t — (ur — ¢1)] = [Zo/to — (ur — ¢2)](to/8)". (32)

Values of u and ¢ are obtained from Eqs. (29) and (28a), and p and » from Eqgs. (8b)
and (8a).
Region 2. Here we have, in similar fashion,

u+c = z/t, (33a)
u—c= (& — z,0)/ — ¥, (33b)

u = 3@ — z0)/¢ — ) + 32/, (34)
de/dt = u = (@ — z:0)/( — t*) + 3z/t. (35)

The negative characteristic here extends from a point such as F (Fig. 1) to the match
point A at (z,, , t¥).
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Region 3. Here we have a point such as G of Fig. 1, with the minus characteristic
intersecting the interface. The situation is similar to that for the shock path, in that the
state at @ is related to that at D, where the minus characteristic intersects the interface.
Here, however, the two states are not identical in p and u, so the situation is more com-
plicated. Let  and ¢ be a point on the particle path, such as point G, and z; and ¢; be the
point of intersection of the minus characteristic through it with the interface, point D.
The characteristic relations are

u + ¢ = z/t, (35a)
u—c=(@x—z)/¢t —1t) =u —c, (35b)
u =3l —z)/C—t) +z/t], (36a)

where c; is the sound speed in the explosive at the interface, given by Eq. (8b). As in the
case of the shock, we obtain an equation for df;/dt. We begin by differentiating Eq. (35b)
with respect to ¢; to obtain

(dz/dt)(dt/dt;) — dx;/dt; = (du./dt; — de./dt;)(t — &)
+ (u; — c)(dt/dt; — 1). 37

Now dz,/dt; and du./dt; are already known from the interface solution, with dc;/d¢
given in terms of du;/dt by Eq. (16). Using these results, together with the constancy
of u — ¢ along negative characteristics, we find

dt./dt = (x/t — w)/lkp:"”* + Flui, t:)(1 — ¥kp™""2:) (¢ — ). (38)
The remaining particle path equations are
du;/dt = F(u,,t;) dt./dt, (39a)
dz/dt = u, (39b)
z; = (u; + kp'’*)t;, (39¢)

and Eq. (36a) for u. As before p; and 2, are the functions of u; given by Eqgs. (10).

5. Summary and numerical results. We have presented an ‘‘exact’” (i.e., reduction
to ordinary differential equations) solution of the one-dimensional time-dependent
problem of the deceleration of the shock in an inert driven by a steady unsupported
Chapman-Jouguet detonation, for special but realistic equations of state. An important
restriction is that the solution applies only to the case in which the shock impedance of
the inert is less than that of the explosive.

The motions of the interface and shock are of greatest interest. The interface motion
is the solution of Eqgs. (18) and (19) and the shock motion is the solution of Egs. (22),
(25), and (26). The initial conditions for both are given by Egs. (13) and (20). Functions
of u appearing in the equations are given by Eq. (10).

We calculate the shock and interface for the explosive Composition B and the inert
plexiglas. The constants used are

Composition B: Do

1.6 g/cc, D = 0.85 cm/us
Plexiglas: po = 1.19, a = 0.257, b = 1.54.
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Composition B has a measured density of 1.714 g/cc and a detonation velocity of
D = 0.7991 cm/us, with a Chapman-Jouguet pressure of 0.291 Mb [6]. Although later
work [7] indicates a significant uncertainty in the measurement of the Chapman-Jouguet
pressure, we use the value for [6], which gives a Chapman-Jouguet state y of 2.77.
With v = 3, we increase D and decrease p, under the constraint of constant Chapman-—
Jouguet pressure (Eq. (7a)) at the experimental value until we obtain the best match
to the experimental isentrope [6] in p — u space; the rounded values above match this
curve almost within experimental error down to 1 kb. This is of course done at the cost
of increasing D so that while the shock’s initial pressure is correct, its rate of deceleration
is slightly too large.

The measured plexiglas Hugoniot [8] is well represented by a linear U — u relation
(again we have rounded the constants). The approximation imposed by the Walsh
equation of state may be judged by its prediction that the free-surface velocity produced
by the shock impinging on a free surface (with resulting expansion to zero pressure) is
always exactly twice the particle velocity at the shock; the experimental ratio for a
shock pressure of 0.2 Mb is 2.04 [8]. We remark that the coincidence between the Hugoniot
and rarefaction locus in p — u space, which is responsible for the ratio of exactly two
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Fia. 4. Pressure at the interface (lower curve) and at the shock (upper curve).
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between the free-surface and shock-particle velocity, does not imply coincidence of these
two curves in p — v space.

The results of the calculation are given in Table 1 and Figs. 4 and 5. (Figs. 1 through 3
aré also drawn from this problem.) Some idea of the entropy variation due to the shock
deceleration may be had by comparing the densities and characteristic slopes at the
two ends of a plus characteristic in the inert as given in Table 1. The characteristic
through the shock path at ¢ = 3 originates at the interface at ¢ = 1.69. The constant
pressure along the characteristic is 0.119 Mb, the interface particle having expanded to
this value from the initial pressure of 0.216 Mb. The density at the shock is 1.81 cc/g,
49, higher than at the interface, and the plus characteristic slope v + ¢ at the shock is
0.730 em/us, 39, less than that at the interface.

Appendix A: The Walsh equation of state. The Walsh equation of state is con-
structed so that the relation between p and w in a rarefaction wave originating at any
point on the shock Hugoniot centered at the normal initial state (p = 0, v = v,) is the
same as that for the shock. (The inert Hugoniot of Fig. 2 is an example.) The shock
Hugoniot is taken as U = a + bu, which is a good representation of experimental data
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Fi1a. 5. Particle velocity at the interface (lower curve) and at the shock (upper curve).
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TABLE 1.
Interface particle path and shock states for the explosive Composition B and inert plexiglas. The col
headings are: T, X, P, U, RHO, C for time t, position z, pressure p, particle velocity u, density p (inert)
and sound speed c (inert); RHOE, CE for density and sound speed in the explosive; UU for shock velocity
U; and TI, XI, RHOI, CI for time t;, position z; and inert density and sound speed at the point where the
plus characteristic through the shock path at (t, ) intersects the interface path. Units are cm-g-us, with
velocity in cm/us and pressure in Mb (10N /m?).

PARTICLE PATH

T x P v RHO c RHOE CE

-988810%  .6324807 1.9300823  .5793926
.9727058  .6479847 1.918382%  .5732666
-6296847 1.8371273  .5489033
-0552765  .6125561 1.7641%69  .5271797
-60604Y7  .S5085691 1.6981385 .5074509

1.1764708 1.0000000 .2169382 .270607%
1.2000000 1.0083047 .2101489 .2653208
1.3000000 1.0317818 . .

1.4000000 1.0533265 .1634306 .2266264
1.5000000 1.0771772 .143760% .2108872
1.6000000 1.097520% .1308208 .1964651
1.7000000

. ] .
£1163195 1160669 .183744S 1.7252065 .5676102 1.3829558  .4730317
1.

1
1
1.8000000 1.13%3113  .1070861 .1722857 1.6904078  .5544767 5322783  .4578872
1.9000000 1.1510128 .0975393  .1619112 1.6387249  .S42143% [.4054192  .4438050
2.0000000 1.1687248 .0892374  .1524736 1.6297997 .5305439 1.44i9219  .4308068
2.1000000 1.1615352 .0819228 .1430590 1.6032736 .3198257 1.4013968 .4187768
2.2000000 1.1935206 .0734576  .1339614 . ] -407%371
2.3000000 1.2087486 .0697137 .120698% 1 .
2.4000000 1.2212790 .0643668 .12199688 . 1. - 3868674
2.5000000 1.2331651 .0599908 .1158017 1.5159113 .4817342 1.2631487  .37748v3
2 1. . 1100547 1.4977802  .4735023 1.2334235  .3883816
2.7000000 1.2551895 .0521181 .1047125 1.4808301 .4858973 1.2052832 .380172%
2.8000000 1.2654091 .0487316  .09973%9 1.4849721 .4582899 1.1783903  .35219%9
2.9000000 1.2751477 . . 1. 8. S4512536 1.1532238  .34461%6
3.0000000 1.2844372  .0428441  .0907461 1.4380872  .4W4uS640 1.1290758  .3373996
SHOCK
T X P v c w " X1 RHO1 (4]

RHO
-900810%  .6524807  .673733% 1.1764706 1.0000000 1.988810%  .6524807
-9849792  .6499912 .6706088 1.1854120 1.0024107 1.982623%  .650763%
1.22233563 1.0121816 1.9579121  .643779%
-9550177 .6308848  .64E731S 1.2577137 1.0212%91 1.9334638  .6372%66
1.5000000 1.2116197 .1865131 .2463123 1. 16 . 1 t. 1.9149430  .6311487
1.6000000 1.274786% .179067% .2400932 1.9209386 .6147523  .B26743% 1.3242649 1.0376831 1.8960812 .625405%
1.7000000 1.3389825 .1723120 .2343453 1.9170850 .6075642 .6178917 1.3557028 1. 1

1.1764706 1.0000000 .2169%82 .270607% 1|
]
1
1
1
1
]
1.8000000 1.3983660 .1861511 .2290110 1.90%911 -6008880 .6096769 1.386050% 1.0521506 1.8624993 .6148733
1
1
1
]
1
1
1

1.2000000 1.0138157 .2143311 .2685771
1.3000000 1.0822413 .2039775 .
1.4000000 1.147474S . 1947672 .253072%

.
1.9000000 1.4389487  .1605061 .22404%23 1.8953303  .S946076  .6020251 1.4153935 1.0567971 1.8474S02  .610024%
2.0000000 1.5187877 .1333121 <3948736 1.4438088 1.0850965 1.8333871  .B054200
2.1000000 1.5779383  .1505147 2150451 1.8736402 .5832125 .5681895 1.4713567 1.0710807 1.8202038 .8010390
2.2000000 1.8384350 .1480683 .2109527 1.8687969 .5760029 .5818672 1.4981022 1.0767771 1.8078095  .3968627
-0581748  .5730773  .5738277 1.3240960 1.0822102 |.796126%  .5928746
2.4000000 1.751631%  .1380785 B .5703168 1.5493855 1.0874013 1.7050870 .5690603
2.5000000 1.8083932 .1344733  .2000032 1.8420821 .S639775  .S650049 1.57%0137 1.0923893 1.7746327 .5654066
2.6000000 1.8648415  .1310937 .1967312 1.834SI4S 3397607 .5599661 1.5980191 1.0971310 1.7647119 .5819019

2.3000000 1.69%3218 .1419340 .2070939

2.7000000 1.9203967 .1279182 .1936216 1.8272732  .S557417  .SS51773 1.6214370 1.101701% 1.7952798  .5785357
2.8000000 1.9736846 .1249281  .1906613 1.8203165 .5519049  .%506183 1.6442996 1.10609%2 1.7462957 .5752987
2.9000000 2.030%€7% .1221067 .187838% 1.8138252 .5482363  .S462711 1.6666363 1.1103213 1.7377248  .5721822
3.0000000 2.0849434  .1194396  .16S1425 1.8071916 .5447238  .5421195 1.8884742 1.1143937 1.7295353  .5691786

for many materials. The coincidence of the p — u curves makes it possible to reduce the
problem of the overtaking of a shock by a rarefaction wave to the solution of an ordinary
differential equation.

This equation of state was first given by Walsh [5]. Some of its thermal properties
were later explored by Enig [9]. We summarize the results here, and give a suggested
computational algorithm for the function p(v, ), which is required by most computer
codes which treat the time-dependent problem.

The shock Hugoniot (caret) through the initial state is

P = poa’n/(1 — bn)’, (Ala)
¢ = %nﬁ/ﬂo ) (Alb)
n=1— po/. (Ale)

The isentrope through a point (p, 9, ) on the shock Hugoniot is

p+w=(@+ n)et?, (A2a)
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e=¢+(p—9/8— /B In[(p + =)/@ + )], (A2b)
B = 4pb, T = p,'a’/B. (A3)

Most finite-difference computer codes require the equation of state in the form p(e, v).
We have done this as follows. First determine the point (, #, €) at which the isentrope
through the given e, v intersects the Hugoniot. This may be obtained by iterative solution
of

éd) —e =0, (A%)

for §, with e the given e, & the isentrope function (A2b) with the given v, and &(9) and
P(9) the Hugoniot functions (A1). With this value of 9, p(v, e) is given by the isentrope
function (A2a).
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