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NECESSARY CONDITIONS FOR DIVERGENCE IN
LINEAR ELASTIC SYSTEMS*

By J. A. WALKER (Northwestern University)

Consider a linear elastic system without velocity-dependent forces,

My(t) + Ky(t) = 0 (1)

such that for all r £ [0, °°), (y(j), y(j)) £ y X y, where
(i) (■) denotes d( )/dt and the time t £ [0, °°),

(ii) 3C is a real Hilbert space with inner product (, ), and 'y is dense in X,
(iii) the real linear spatial operators M and K are independent of time, K l exists,

and Six = = ®-m ~ X.
Thus the elastic system may be lumped-parameter, distributed-parameter, or a com-
bination of the two.

The stability of the equilibrium of a system similar to this, but including velocity-
dependent forces, was studied by the direct method of Liapunov in [1], Often it is also
of interest to distinguish between two modes of instability in system (1), these modes
being known as "divergence" and "flutter" [2, 3, 4], A divergent solution is of the form

y(t) = y0 exp (pt), y0 £ % (2)

where p is a positive real, while a flutter solution is of the form

y(t) = exp {pt){yl sin ait + y2 cos ut), yx , y2 £ <y, (3)

y(t) = t(y! sin ut + y2 cos ut), ^ , y2 £ y, (4)

where p and to are positive real.
If M and K are symmetric and M is positive definite, system (1) is termed conser-

vative and the functional T(y), U(y), defined by

2T(y) = (y, My), y £ <y,
2U(y) = (y, Ky), i/ £ fy, (5)

are known as the kinetic and potential energies, respectively. It is known that flutter
does not occur at all in a conservative system, and divergence can occur if, and only if,
at least one of the above functionals is not non-negative. It is easily shown that this
condition remains necessary for divergence even when M and K are not symmetric.

Theorem: If both T(y) and U(y) are positive definite, divergence does not occur.1

* Received November 2, 1972.
1 A similar statement was recently made for a special case of (1), although the proof was not rigorous

[4].
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Prooj: Assume that divergence does occur and both T(y) and U(y) are positive
definite. Then, using (2) and (1), we find

(p2M + K)y0 = 0,

and thus

P2(yo , My0) = ~(y0 , Ky0),

which contradicts the assumption that both T(y) and U(y) are positive definite.
The following statement is similarly obvious:
Corollary: If there exists an operator L, C £>l , C 3C, such that both the

functional (Ly, My) and (Ly, Ky) are positive definite, divergence does not occur.
This very simple theorem and its corollary often provide a much easier means of

checking for divergence than do the usual eigenvalue or Galerkin approximation methods
when studying nonconservative systems. For example, consider the following generaliza-
tion of the Pfliiger problem [5, 6]:

y + (d4 + f(x)d2)y = 0, 0 < x < 1,

•y = \y E 3C24(0, 1)|y = d2y = 0 at z = 0, 1}, (6)

X = £2(0, 1).

Using the corollary and choosing L = — d2, we find

(Ly, My) = - f yd2y dx = [ (dy)2 dx,
Jo Jq

(Ly, Ky) = - f (d2y)(d4 + 1{x)d2)y dx = [ [(d3y)2 - j(x)(d2y)2} dx,
J 0 J 0

(7)

and divergence does not occur provided the operator

B = -(d2 + f(x)),

£>b = [u G 3C22(0, 1)|m = 0 at a; = 0, 1} (8)

is positive definite. In [6] it was shown that this condition was actually sufficient for
stability of the equilibrium of (6) when an appropriate stability norm is used.

The theorem has a particularly simple physical interpretation when K and M are
such that <y C , *y C £>m» , where K* and M* are the adjoints of K and M, respec-
tively. In this case

4T(y) = (y, (M + M*)y), y G %

4U(y) = (y, (K + K*)y), y E 'y, (9)

and thus divergence may occur in (1) only if divergence occurs in the system

(M + M*)y + (K + K*)y = 0, (y, y) E y X 'y. (10)
Note that (10) is conservative if M is positive definite.

There is a similar physical interpretation of the corollary if L is chosen such that
DL. = 3C, L(<y) C £>k> ■ In this case
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2 (Ly, My) = (y(L*M + M*L)y), yE%
2(LY, Ky) = (y, L*K + K*L)y), y E V, (11)

and thus divergence may occur in (1) only if divergence occurs in the system

(L*M + M*L)y + (L*K + K*L)y = 0, (y, y) G K X U. (12)
Note that (12) is conservative if L*M is positive definite.

To demonstrate this analogy consider the previous example and choose L = TV1.
Then

L*M + M*L = 2 B'\ L*K + K*L = -2d2, (13)
and (12) becomes

B'^y - d2y = 0, (y, j) G K X % (14)

which is conservative provided B~l is positive definite.
Now let us consider the effect of velocity-dependent forces by replacing (1.1) with

My(t) + Cy(t) + Ky(t) = 0, (y, y) E 'y X <y, (15)

where M, K, % and 3C are as previously defined while C is a real linear spatial operator,
independent of time, such that S)c = D, (Re C 3C. Again considering the possibility of
a divergent solution (2), we find the following:

Theorem: If both T(y) and U(y) are positive definite, while (y, Cy) is non-negative,
divergence does not occur.

Proof: Assume that divergence does occur, both T(y) and U(y) are positive definite,
and (y, Cy) is non-negative. Then using (2) in (15), (p2M + pC + K)y0 = 0, and thus
p2(y0 , My0) = —p(y0 , Cy0) — (y0 , Ky0), which is a contradiction since p > 0.

Corollary: If there exists an operator L, *y C SDt , <Rl C K, such that both
(Ly, My) and (Ly, Ky) are positive definite while (Ly, Cy) is nonnegative, divergence
does not occur.

This theorem and its corollary generalize the preceding results to nonconservative
systems with velocity-dependent forces and provide, in effect, simple sufficient conditions
for the absence of divergence. At present there are no equally simple sufficient conditions
for the absence of flutter. It should also be noted that although the presence of divergence
or flutter implies instability of the equilibrium relative to any given stability norm
ll(2/> 2/)ll« (not necessarily equivalent to the norm of 3C X 3C [1]), the converse is not
generally true unless 3C is finite-dimensional [7].
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