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A FORMAL EXPANSION PROCEDURE FOR THE
SOLITARY WAVE PROBLEM*

By BERNARD EPSTEIN (University of New Mexico)

1. The (two-dimensional) problem of the solitary wave may be stated as follows:
to demonstrate the existence and to determine the shape of a profile which moves over
a horizontal line without change of shape at a constant speed, the fluid being assumed
incompressible and in viscid. A detailed formulation of the problem, together with an
existence proof, has been presented by Friedrichs and Hyers [1], Their remarkable paper
also presents a brief survey of earlier work on the problem, together with an extensive
bibliography of the pertinent literature.

Let the horizontal line over which the flow occurs be taken as the x-axis and let the
asymptotic height of the profile and the velocity at infinity be denoted by h and U
respectively. Then by change of scale these two quantities may be normalized to unity,
and it becomes apparent that only a single essential parameter appears in the problem,
namely gh/U2, where g denotes the gravitational acceleration; this parameter is hence-
forth denoted by y.

The mathematical problem may now be formulated as follows. A nontrivial function
j(x) which vanishes at infinity is sought such that the following system of equations
for the unknown function y), the streamfunction of the flow, is solvable:

= 0 in the region 0 < y < 1 + j(x); (la)

d\///dx—>0 and d\f//dy —> 1 as \x\ —» (lb)

i(x, 0) = 0, i(x, 1 + i(x)) = 1; (lc)

on the free streamline, defined by the equation y = 1 + f(x), the
Bernoulli condition dif//dn = (1 — 2yj(x))1/2 must be satisfied,
where d/dn denotes differentiation in the direction of the outward
normal. (Id)

In numerous treatments of this problem antedating [1], nonrigorous but physically
plausible arguments have indicated that a symmetric solution of this problem does exist
for values of y less than but sufficiently close to unity—that is, for values of U slightly
exceeding the "critical velocity" (gh)1/2—and that the function f(x) defining the shape
of the profile is given, in some approximate sense, by

f(x) ~ |a2 sech2 ax, (2)

* Received November 5, 1972. Research partially supported by the National Science Foundation
under Grant GP 29042. The author wishes to thank Dr. I. I. Kolodner, who suggested the idea of ex-
tending the definition of the stream-function to the entire plane and then employing a simple-layer
representation of the entire function. A portion of this work was done during the academic year 1971-
72 when the author was on sabbatical leave at Technion (Israel Institute of Technology).



90 BERNARD EPSTEIN

where 7 = exp ( — ̂ a2) = (—ta2)"/n!. (In [1] the authors define 7 by the equation
7 = exp ( — 3a2), so that the "principal term" has a slightly different form in their
treatment, namely 3a2 sech2 faz.)

In the following section the problem formulated above in Eqs. (la-d) is converted
into a nonlinear integrodifferential equation, which is then analyzed at some length in
subsequent sections. In particular, the approximation (2) is derived, and a procedure is
developed for deriving a formal solution in the form of an infinite series. Indeed, it
is shown that by altering slightly the relationship between 7 and a which is given above
immediately after (2), we can assure that the higher-order terms of the series assume
an especially simple form. We have not succeeded in demonstrating that this series is
actually convergent (for sufficiently small values of a), but the comparative simplicity
of the terms of the expansion gives some cause to hope that a more precise investigation
will indeed establish the convergence. Of course, it may very well happen that the series
expansion, while divergent for all non-zero values of a, is asymptotically correct.

2. Assuming that the problem defined by Eqs. (la-d) is solvable, we extend the
definition of \p(x, y) to the entire plane as follows: \p(x, y) = 1 when y > 1 + /(x),

y) = —ip(x, —y) when y < 0. By taking account of (la), (lc), and the Schwarz
reflection principle, one sees that \p{x, y) is continuous everywhere, and that it is harmonic
everywhere except on the profile and on its image (y = — 1 — j{x)). On these two curves
the normal derivative undergoes a jump-discontinuity of (1 — 27/(2))1/2, so that a
simple layer of density =t(l/27r)(l — 2yf(x))W2 is associated with \p(x, y) along these
curves, the signs being chosen positive and negative along the profile and its image
respectively. (Since \p(x, y), unlike its gradient, experiences no discontinuity, no double
layer is involved.) Taking account of the behavior of <p(x, y) "at infinity" and of the
oddness (with respect to y) of this function, one can easily justify the assertion that
\f/(x, y) is actually equal to the potential generated by the aforementioned mass-dis-
tribution, and so we obtain the integral representation

»> - i I".(1 - +r&y",oe (1: $ U" - i>"£-(3)
In particular, for y > 1 + f(x), and a jortiori for y > 1 + max f(x), the identity

41 - f. '<* (I: % + ; t ff} « M
must hold. (In particular, if the trivial solution j{x) = 0 is inserted into (3), one obtains
for \p(x, y) the values 1, y, and —1 under the conditions y > 1, \y\ < 1, and y < — 1,
respectively, in agreement with (la-d) and (4).) Conversely, if the function f(x) satisfies
the integrodifferential equation (4) and behaves suitably at infinity, then it is not
difficult to see that the function \p(x, y) defined by (3) constitutes (for 0 < y < 1 + j(x))
a solution of the system (la-d).

3. If for convenience we momentarily set

«= ;(1+^)}, (5)
£ — x + ly

then the logarithm appearing in (4) can be expressed as log |1 + u/l — u\2, or
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2 Re log (1 + u)/( 1 — u). The restriction imposed on y, namely that y > 1 + max j(x),
guarantees that \u\ < 1, so that

2 log 1 + u A ( , u3 , m5 ,
t^"T + 3 +-+ ■■■)■ (6)

Substituting from (5) into (6) and taking the real part of the resulting series, we obtain,
by an elementary computation,

ft - xf + (y + 1 + my , V (—!)"(! + W+1 d2"Pft - X, y) n,
l0g ft - x)2 + (y - 1 - /ft))2 h (2n+l)! dt ' ( )

where Pft — x, y) is the Poisson kernel of the upper half-plane, namely y/ir[(| — x)2 + y2]-
Substituting from (7) into (4) we obtain, for y > 1 + max j(x), the identity

i = £ (i - 2/ft))i/2(i + my'2 g(~1)("2(^^y+1 --^7„y)d?. (8)

If it is assumed that the function /ft) possesses derivatives of all orders and that these
derivatives vanish at infinity, then the same is true for all derivatives of

(1 - 27/ft))I/2(l + fft)2)1/2(l + /ft))2"+I.

Moving the summation outside the integration, integrating by parts so as to transfer
all the differentiations from the Poisson kernel to the remaining factor in each term of the
summation, taking account of the conditions at infinity, and then restoring the order of
integration and summation, we obtain (entirely formally)

1 = f tfft)Pft - x, y) d£, (9)
J —CO

where
co / -j \ to

ffft) = E (2n~+ !), jp= K1 - 27/ft))1/2(l + /'ft)2)1/2(l + /ft))2"+M- (10)

Assuming that (10) does indeed define a bounded and continuous function r/(£), we
argue as follows. The right-hand side of (9) exists for all points in the upper half-plane
and defines there a harmonic function. According to (9), this harmonic function must be
identically equal to unity in the half-plane y > 1 + max f(x); now, by the uniqueness
theorem for harmonic functions, this harmonic function must equal unity everywhere
in the upper half-plane. Thus the boundary values of this function are identically equal
to unity, while by (9) they are given by r/ft). Hence, we conclude, quite formally, that
the function which defines the shape of the profile must satisfy the following differential
equation (of infinite order!):

Z (2; + j1}, !(1 - 27/ft))1/2d + fft)2)1/2(i + /ft))2n+1! = 1. . (11)

4. We now indicate how it is possible to derive from (H) the "principal term"
given by (2)—in fact, a formal expansion for the shape of the profile. It appears that
a "stretching technique" is quite indispensable in connection with this problem (cf. [1]).
We introduce the new variables -q = a£ and F(rj) = /(£), where a is defined in Sec. 1.
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Then (11) assumes the form

i(l - 27F(„))1/2(1 + ct2F'(7j)2)1/2(l + W+1} = 1. (12)
/ i"\n/t2n /72'-A 1) a _  U1 _

„,0 (2n + 1)! dr]

We assume for F(ri) an expansion of the form

F(v) = a4>i(ri) + a24>2{v) + a3<t>3(ri) + • • • , (13)

insert this expansion into (12), and assemble all terms containing a specified power of a.
(The presence of the factor a2" assures that each power of a will be multiplied by a poly-
nomial expression in the <f>t's and their derivatives.) The coefficients of a0, a', and a2
turn out to be 1, 0, and — §<£i2 respectively. Thus, matching of coefficients on the two
sides of (12) leads to the conclusion that 0i(r?) must vanish identically. The exact form
of the coefficient of a3 need not concern us here; what does matter is that it vanishes
identically when account is taken of the fact that <j>, must vanish identically. Next, the
coefficient of a4 is found to equal i<f>2 — f<t>22 — hfa" (plus terms which vanish identically
by virtue of the vanishing of 0,). Hence, we are led to the differential equation

i<t» - U* - \<t>" = 0. (14)
A simple analysis shows that, aside from the trivial solution, Eq. (14) possesses the
following one-parameter family of solutions which vanish at ± 00 (and no others):

<t>2(v) = i sech2 (r? — constant). (15)

Since the arbitrary constant appearing in (15) can be eliminated by a translation, we
may consider that (14) possesses the unique non-trivial "well-behaved" solution

Mv) = i sech2 v> (15')

in agreement with (2).

5. The coefficient of a5 works out to ^4>:t — 3<t>2<t>z — \4>i", when one takes account
of the identical vanishing of <£i . The differential equation

4^3 3$2$3 30a" = 0 (16)

possesses the "well-behaved" nontrivial solution sech2 r; tanh i) (when <f>2 is replaced by
the right-hand side of (15')). It readily follows from this that there does not exist a
nontrivial even solution of (16) which vanishes at infinity, for otherwise all solutions of
(16) would vanish at infinity, and this is certainly not true. Since we are confining
attention to the search for a symmetric profile, we are led to the conclusion that 4>3
vanishes identically. However, we remark that the existence of a nontrivial odd solution
of (16) which vanishes at infinity may indicate the existence of a non-symmetric solitary
wave. Also, we remark that if for <f>2 we had chosen the trivial function instead of the
"principal term" we would still be led to the conclusion that <j>3 must vanish identically
(even without the restriction that <f>3 should be an even function).

Before writing down the coefficient of a6 we remark that all the results obtained up
to this point remain unchanged if the relation between 7 and a is given by any power
series of the form

7 = 1 — ia2 — c2al — c3a6 — • • • , (17)
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rather than the specific one appearing after (2), for the values of c2 , c3 , • • • have not
yet played any role. We temporarily employ the form (17) in order to determine whether
some specific choice of the coefficients c2 , c3 , • • • will simplify the search for the coeffi-
cients 4>i , <t>a , ■ ■ ■ appearing in the expansion (13). The coefficient of a6 now works out
to (when one uses the identities 4>i = <t>3 = 0):

g 04 30204 0 $4"

+ jc202 + g $22 — 023 + 2 02/2 + 30 ^2"" _ 9^2" 12 (18)

When one takes account of (15') one sees that the expression in braces assumes the
form A sech2 77 + B sech4 77 + C sech6 77, where A, but neither B nor C, depends on c2 .
If c2 is so chosen that A vanishes, the differential equation obtained by equating (18)
to zero possesses a unique even well-behaved solution, and this solution is of the form
a sech2 77 + /3 sech4 -q (cf. sec. 6); for any other choice of c2 there will still exist a unique
even well-behaved solution, but it will not possess such a simple form. A simple calcula-
tion shows that the value of c2 for which the aforementioned simple solution exists is
given by c2 = 16/45; with this choice of c2 , one obtains for 04 the expression

04 = ¥ sech2 77 —|— -g- sech4 r/. (19)

Proceeding still further, we obtain as the coefficient of a7 the expression i<j>5 —
30206 — \<t>5", and the argument employed previously leads to the conclusion that 05 ,
like <t>i and <f>3 , must vanish identically. Similarly, all further 4>k's with odd index are
eliminated.

The coefficient of a assumes the form (when one takes account of the specific forms
of 02 and <t>4)

6 — 3<M>e — + {A sech2 + B sech4 77 + C sech6 ?j + D sech8 17}, (20)

where A involves the coefficient c3 appearing in (17), while B, C, D are completely fixed.
Once again it is easily shown that for exactly one choice of c3 , namely 128/945, the
coefficient A vanishes and the differential equation obtained by equating (20) to zero
possesses a unique solution of the simple form a! sech2 jj + a2 sech4 77 + a3 sech6 77,
namely:

06 = | sech2 17 — sech4 77 + sech6 77. (21)

The rest of the procedure is obvious. We disregard the coefficients of a", a11, a13, ■ ■ ■ ,
but as we determine the coefficients of a10, a12, a14, • • ■ we find that there exists a unique
choice of the coefficients c4 , c5 , c„ , ■ • • for which the functions <ps , <t> 10 , 0i2 , • • • turn
out to be polynomials of degree 4, 5, 6, • • • in sech2 77. If this procedure is to have any
meaning, we must show that when the coefficients of the series (17) are chosen in the
manner described above, the series will have a positive radius of convergence, and it
would be even better if one could determine explicitly all the coefficients at once, rather
than by employing a tedious recurrence procedure. As shown in Sec. 7, the coefficients
are given by

22*l(2fc) , f(2Jfc) = ±n», (22)
-»2*+l ,

ck
IT
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and the series (17) converges, for |a| < ir/2, to 2a cot 2a, so that y decreases monotonely
from one to zero as a increases from zero to 7r/4.

6. It is evident, by induction, that if the functions tj>2, <f>i, • • ■ , <t>2n-2 are given by
polynomials of degree 1,2, • • • , n — 1 in sech2 rj, then the coefficient of a2n+2 in the
expansion of the left-hand side of (12) will assume the form

q $2n _ 302<#>2n — q 4>2n" + S SCCll" 7]. (23)
O k = l

If we insert for <j>2„ the expression Bkn sech2* 77 (and, of course, for 4>.2 the expression
i sech2 ?)), then (23) assumes the form

A 1 2 i J A I 21X 12 „ \ , 2n + 2
^.j.nSech v + \An+Un -\   Bn,„} sech y

i v-* /4 i2\r> , 4fc — 6k — 10 i a 12k+ 2^, wj (1 — k )Bk,n H ^ Bk^l n + 4i,nf sech tj.

(24)

From (24) it is immediately evident that the differential equation obtained by equating
the expression (23) to zero possesses a solution which is a polynomial in sech2 r/ if and
only if AUn vanishes; when this condition is satisfied, the polynomial will be of degree n,
the coefficient Bnn being given by — 3A„+1,„/(4n2 + 2n — 12) and the remaining coeffi-
cients then being obtained recursively from the equations

- 4? - h - 10 K- + I " - *•>"'■•} ■ 2<i<»- (25)
Indeed, by carefully examining (25) and the preceding formula for Bn n one can show that

Bn

= 3

c11 Ci2 • ■ • C 1„

C21 C22 ' ' ' C2n

Cn 1

•^2,n

^4-3, n

(26)

where the matrix-elements c,, are defined as follows: First, we define ak as (k + 2) (2 — 4k)
and bk as 4fc(/c + 2), and then we define c,, as zero if i < j, c,, as 1 /a,- , c<,, + i
as — &</aia,-+l , Ci.,+2 as 6i6,-+1/a,-0<+i0,-+!i , ciii+3 as —bibi+1bi+2/aiai+1ai+2ai+3 , etc.
(Note that the index n does not enter at all into these definitions.)

It is hoped that it may prove possible, by exploiting the rather simple form of the
matrix appearing in (26), to obtain by an inductive argument bounds on the coefficients
A^n (2 < i < n + 1) and Bin (1 < j < n) which, in turn, will guarantee the convergence
of the formal expansion (13) for sufficiently small values of the parameter a.

7. Finally, we proceed to justify the assertion made in Sec. 5 concerning the "optimal"
choice of the coefficients appearing in (17). It is not difficult to see that the problem of
choosing the ck s is unaffected by linearizing Eq. (12). That is, we omit the radical
(1 + a2F'{v)2)1/2, replace (1 - 2yF(v))1/2 and (1 + F(v))2n+1 by 1 - yF(v) and 1 +
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(2n + l)F(tj), respectively, and finally omit the quadratic term appearing in the product
of the latter two expressions. Thus, for the linearized version of (12) we obtain

oo /  i \n 2n i2n

£(k+Tj!5? 11 + (2» +1 - - »• <12'>
Since each of the functions <f>i , <t>2 , <t>3 • • • appearing in the expansion (13) is to be a
polynomial in sech2 tj, F(-q) must, for large (positive) i), be expressible (at least formally)
as a series of the form

F(jj) = exp (-2rj) + a2 exp ( —4ij) + • • • , (27)

where the coefficients , a2 , • • • will, of course, depend on the parameter a. Inserting
this expansion into (12'), one finds that the left-hand side of the latter reduces to

ii / r> \ v (—l)"(2a)2"(2n -|- 1 — 7)
1 + a, exp (—277) 2^  (2w + 1)!  + '' • - (28)

where the terms indicated by • • • contain powers (greater than the first) of exp ( — 277),
and hence are negligible in comparison with exp (—2ij). Thus, we obtain (since a,
certainly does not vanish)

V (~l)"(2fl)2n(2n + 1 — 7) _ ,9Q,
h (2n + 1)! ' }

and this equation is exactly equivalent to 7 = 2a cot 2a, in agreement with (22).
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